学年

教科

質問の種類

物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
物理 高校生

2番のアについて F1=F0のときfが最大摩擦力になるのは何故ですか? 自分で消しゴムと本でやってみたんですけど、一体になっているからと言って静止摩擦が最大とは限らないんじゃないかと思いました。 引く大きさが最大の時よりも小さくても、一体になってますし、どういうことなのでし... 続きを読む

16 20* 基 滑らかな水平面上に質量 M, 長さLの板を置く。 板の上 面はあらい水平面で, 右端に質量 mの小物体Pが置かれている。 重力加速度をg とする。 板 M -L Pam 力 意 数 (1) 板に一定の大きさの力F を水平右向きに加え続けたところ, Pと 板は一体となって運動した。 42 20 力学 17 (1) (ア) P と板の一体化の見方により, 運動方程式は (m+M)a=F ... ① F a=. m+M (イ) Pだけに注目する。Pは板から静止摩擦力を受 けるが、Pの加速度が右向きだから, fも右向きと 決まる (ma=Fよりこの向きはの向き)。 あ るいは,Pは板によって右に「引きずられて」 動い ているという考え方でもよい。 P の運動方程式は ma=f...②.f=ma= すべりがなけれ 静止摩擦力 av YA Fi (ア) 板の加速度αを求めよ。 (イ)Pが板から受けている摩擦力の大きさfを求めよ。 (2) 板とPを静止させ, 板にFよりも大きい一定の力 F2 を水平右向き に加え続けたところ, 板は運動し, Pは板の上をすべり続けた。Pと 板の間の静止摩擦係数をμ, 動摩擦係数をμ' とする。 (ア) Pが板上ですべるためには F2 はある値F。 より大きくなければな らない。 F を求めよ。 (イ) F2 の力を加えているときの板の加速度 A を求めよ。 (ウ) Pが板の左端に達するまでの時間を求めよ。 m m+MF 別解 板に注目する。 板はPから反作用 (赤矢印) を左向きに受ける。 そこで, 板の運動方程式は MaF-f ... ③ ③ 接触があれば 作用反作用に注意 この式に(ア)で求めたα を代入すればfが求められる。 初めから②と③の 連立 (未知数はα と f)で解いてもよい。 ②+③ = ① の関係がある。 つまり、各 部分について正しければ、全体についての式が自然に得られる。 (2)ア) F=F。 のとき, fは最大摩擦力μmg になるから,上の結果より Fo=μ (m+M)g m Fo=μmg m+M (イ)Pは板に対して左へ滑るから、動摩擦力 (神奈川大 + 玉川大 + 鹿児島大) a= 30 4] エネルギー保存則 MA=F2-μ'mg f' =μ'mg を右向きに受ける。 板はその反作用 (赤矢印)を左向きに受けるので、板の運動方程式 は F-'mg A= M 力学的エネルギー保存則 (ウ)Pの加速度を α とすると 運動エネルギー 1/12m+ 位置エネルギー = 一定 ※ 実用上は摩擦がないとき用いられる。 ma' =μ'mg F2 ⇒A やはり板はP を右へ引きずる a='g 板に対するPの相対加速度は 位置エネルギーとしては,重力の位置エネルギー mgh a=α-A=F2-μ' (m+M)g M Pは板に対して初速0で左へ動くから,ここで左向きを正に切り換えると 2L 2 ML =v=VF-μ(m+M)g やばねの弾性エネルギー 1/12hx などがある。 エネルギー保存則 摩擦がある場合は, 摩擦熱という熱エネルギーを考えれば よい。 摩擦熱 = 動摩擦力 × 滑った距離 I=1/2lalt 右向きを正として続けるなら, Pの座標xがx=-Lとなることに注意し, 12/2立する。 なお、一般にμであり、F>Fo=μ(m+M)g>μ'(m+M)g よりα <0と なっている。 40x

解決済み 回答数: 1
物理 高校生

問109のコンデンサーの問題です。 S1を端子2に切り替えたときC1の電圧が2/3Cのままである理由を教えてください。

109 ・回路とつなぎかえ> 電気量保存の法則と、電位差の関係式を用いる。 (イ)S, を端子2に入れる C2の電圧はEと等しい 「極板の間隔を2倍」 電気容量は倍 Aのほうへ電荷をもどそうとするが、 ダイオードに止められる ア) 回路は実質的に右図の実線部分となり, C1 と C2 は直列である。 C と C2 の電圧をそれぞれ V1, V2 とすると AB間の電圧について Vi+V2=E 電気量について Q=CV=2CV2 上記2式より V₁=E 別解 初期電荷が0だからCとC2の電圧の比は電気容量の逆数の比になる。 C+2CE=2/3E C の電圧 V は Vi=C+2C 2C (イ) S端子2に入れると, C2の極板間の電圧はEになるから,AB間の電位 差は Vi+E= 5 =1/32E+E=1E (ウ)BよりAのほうが電位が高いからDには順方向に電流が流れ,Dの電圧が 0になるまで電荷が移動する。 S2 を閉じた後の各コンデンサーの電位差を図のように V1, V2, Vと すると V1 + V2=V/3 ※A← ...... ① また、各コンデンサーに蓄えられている電気量はそれぞれ Q=CV1 Q2=2CV2 Q3 = 2CV3 点A側の電荷の保存より +Q+Q=+/CE+0 ゆえに Vi+2Vs = 212/2E 点P側の電荷の保存より -Q+Q2=1/3CE+2CE ゆえに Vi+2V2=1/32E -E q=Q₁==ce, 2 V-22-1/21. v= Q = 5 E₁ -3 ③ 5 ①, ②, ③ 式より V1, V2 を消去して V3 を求めると Vs= よって, 求める Q3 は 12 Q3=C₁V₁=2C ×52E=CE 12 別解 S2 を閉じた後の図で,点A, Pの電位をx, y と仮定する。点P側の 極板の電荷の保存より Cx(y-x)+2C×(y-0)=-12/3CE+2CE 点A側の極板の電荷の保存より C×(x-y)+2C×(x-0)=+/3/3CE+0 -E, =1/72E.y=1/2E -E 上記2式より x= 5 よって,C の電気量 Q, はQ=2C×(x-1)=2C×(1/E-0)=1/CE (エ) 極板の間隔を広げると電気容量が小さくなる※B。 「Q=CV」より,Q3が 一定ならば,C3 が小さくなると V3 は増加することとなる。 電荷はダイオードDを逆方向に流れることができないから, C3 の電荷が(ウ) のまま保たれる。 V1 Cx=2C×12=cQ==.22CE 2 11 2 _1.Q2 5 1 = U = 1 x V² - 1 · 2 0 - 1 0 ( 2 ) ² - 1 IC (CE) - CE = -CE2 25 144 2 2C 2 2C V20 E S1 |C1 P• ・C C 2 2C A A C₁ C₂ C1 B V3 C 2C より V1+V2=V3 S2 を閉じる前 A V₁ ※ A Vi+ V2=V V3 = V HE 2C B +2/3CE CE C3 P +2CE C21 2C-2CE B S2 を閉じた後 Ax 0 電位差 0 2C S₂ 文 C31 2C0 電位差 0 2C 気容量がいずれもC〔F〕のコンデンサー C1, C2, 抵抗値 108. 〈スイッチの切りかえによる電荷の移動> 図のように、電圧 Vo [V], 2V 〔V〕 の電池 E1, E2, 電 [R[Ω] の抵抗 R, スイッチ S1, S2 が接続されている。 最 初, スイッチ S1, S2 は開いていて,C1, C2 には電荷は蓄 えられていないものとする。また, 電池の内部抵抗は無 1+ 視できるものとする。 次の問いに答えよ。 Vo (V) E2 2V (V) (1) S, を閉じてから十分に時間が経過した。 この間に電池E」 がした仕事を求めよ。 (2) 次に, S, を開きS2を閉じた。 十分に時間が経過した後のC2 の両端の電位差を求めよ。 また, この間に電池 E2 がした仕事を求めよ。 (3) 続いて, S2 を開き, S1 を閉じた。 十分に時間が経過した後, Si を開き S2を閉じた。さら に十分に時間が経過した後の, C2 の両端の電位差を求めよ。 (4) この後,(3)の操作をくり返すと, C2 の両端の電位差はある有限な値に近づく。その値を 求めよ。 S ◆BC=es より電気容 量は極板間隔dに反比例する。 S₁ 180 114 コンデンサー 89 B R R [Ω] C₁ C [F] 109. 〈ダイオードを含むコンデンサー回路とつなぎかえ> 次のア~ウに当てはまる式を記せ。 また,エは指示通りに解答せよ。 A S2 C2 C [F] tr 図に示した回路において, C1, C2 は電気容量がそれぞれC, 2Cの平行平板コンデンサー, C3 は極板間隔を変えることが できる平行平板の空気コンデンサーで,あらかじめ電気容量 が2Cになるように極板間隔を調節してある。Eは起電力E の電池, S, S2はスイッチ, Dはダイオードである。 初め, C1, C2, C3 の電荷は0で, S1, S2 は開かれている。Dは順方 向のみに電流を通し, そのときの抵抗値を0とする。 まず, S1 を端子1に入れて C1, C2 を充電した。このとき、 C の極板間の電圧はアである。 次に, S1 を端子2に入れて, 十分時間が経 S を開いた。このとき, AB間の電位差はイになっている。この状態で、 と C3 にはウの電気量が蓄えられる。 次に, S2 を閉じたまま, Cg の極板 に広げた。 この操作の後, Ca における極板間の電圧 V, 蓄えられている電気 の電気容量 Cx と,極板を広げるのに必要とした仕事Uを, C, Eなどを用い れを区別してエに示せ。 S₁ E 12 =C2 B 110. 〈4枚の導体板によるコンデンサー回路) 次のア~スソーチの中に入れるべき数や式を求めよ。 る文章を解答群から選べ。 ただし,数式はC, V, dのうち必要なも

解決済み 回答数: 1
1/6