学年

教科

質問の種類

物理 高校生

これあっているか確かめて欲しいです。ごちゃごちゃしててすいません🙇 もし間違っていたら教えて欲しいです。

物理 (b) 図3-3のように,z軸上に十分に長い導線があり、導線には大きさがIの電 流がz軸の正の向きに流れている。 また, xz 平面内に1辺の長さがαの正方形 の1巻きのコイルが固定して置かれており、正方形の辺ABは軸と距離αだけ はなれている。導線とコイルは空気中にあり、空気の透磁率をμ, 円周率をと する。このとき,z軸上の導線の電流が, 正方形の頂点Aの位置につくる磁場 7 の (磁界)の磁束密度の大きさは 6 であり、磁束密度の向きは 向きである。 fut 2Ra Z軸の負 Vb I 次に,コイルに大きさがiの電流を図3-3のA→B→C→D→Aの向き に流すと, コイルはz軸上の導線の電流がつくる磁場から力を受けた。 コイルの 辺ABが軸上の電流がつくる磁場から受ける力の大きさは 8であり, 力の向きは の向きである。また, コイル全体が軸上の電流がつくる 磁場から受ける力の大きさは 10 であり,力の向きは 11 の向きで ある。 x軸 1 Co H= H: 270 27.22 47 ※軸の負 1 2 より I 5/19 Bi→>> sec b Vis C + o 4th F Owth S y B = M F & B = MI a より 1 47a A a F. Iblay F. 472 4 D F Fr Wa 図魚 F2 F: MiI Miz 27 47 4 9 ANI (1-31/10 ) 2 2aI 20 29 20 20

回答募集中 回答数: 0
物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0
物理 高校生

この問題の問6と7が解き方が分かりません 解説をお願いしたいです

J 8 非等速円運動 【標準30分・28点】 長さの糸の端に質量mの小球をつけ、図に示すように、もう一方の端0を中心 にして鉛直面内で振り回し、円運動させる。重力加速度をの糸の張力をTとして 以下の問いに答えよ。なお、回転中の糸の長さは一定 (1) とみなし よび空気の抵抗は無視できるものとする。 外 問6 次に れた。 小 はいく 小球の大きさお のをつ るもの 問7 ま 糸が O Acts (m) 1.9 0 T P A Vo mg 図2 問1 小球が最下点にあるときを基準にして,糸が鉛直方向から角0だけ傾いたとき (P点) の小球の位置のエネルギーをm, g, 1, 0 を用いて表せ。 問2 小球が最下点にあるときの速さを” として, P点における小球の速さ”を、エ ネルギー保存則より求め, g, vo, 1, 0 を用いて表せ。 問3 P点における半径方向 (PO方向) の運動方程式を, T, m, l,g,v, 0 を用い て表せ。 てせ 問4 上の関係により,糸の張力Tをm,I,g,vo を用いて0の関数として表し,横 軸に 0,縦軸にTをとって, 0≧≦2の範囲におけるTの変化の概略を図示せよ。 ただし,小球は回転円運動を続けるものとする。 問5 小球が回転円運動を続けるには,最下点における速さ”はいくら以上でなけれ ばならないか。 1g を用いて表せ。

回答募集中 回答数: 0
物理 高校生

イの目と背びれの位置が反転して上下は反転しないのがどうしてか分かりません。どうして水を抜くと凸レンズと似たはたらきが無くなるのか、水があると凸レンズと同じような働きをするのかよく分かりません。

物理 問5 次の文章中の空欄 ア イに入れる語句の組合せとして最も適当な ものを、次ページの①~⑥のうちから一つ選べ。 7 水を満たした円筒の透明な容器 (コップレンズ)がある。 水を満たしたコップは 凸レンズと似た役割をする。図5(a)のように、魚の置物とコップレンズの中心軸 を結ぶ水平線上に, 観測者の目を置いて観察する。 以下では, 容器は十分に薄く、 厚さは無視できるものとする。 上 魚の目 尾ひれ 右 下 上 魚の目 尾ひれ 水を満たした円筒の容器 (コップレンズ) 左 右 観測者の目 図5 (a) 下 図5 (b) コップレンズを通して魚の置物を観察すると, 図5 (b) のように魚の目と尾ひれ の位置が反転している様子が観察できた。 これは光がコップレンズを通過すると きに屈折することが原因である。 図6(a) はコップを真上から見た様子であり,魚 の目の位置から出た光線 aは, コップレンズで屈折し、観測者の目に入る。魚 の目から出た光はさまざまな方向に広がるが,図6(b)に示した光線 bd のうち, 正しい光の進路が描かれているものとして最も適当なものは,図 6 (b) の である。 ア コップの水をすべて抜き空にすると,コップに水が満たされているときと比べ て イ 観察できる。 -68-

回答募集中 回答数: 0
1/13