学年

教科

質問の種類

物理 高校生

至急お願いします🙇‍♀️🙇‍♀️🙇‍♀️ (2)で、向心力は円の中心に向かう向きに働く力だから、上側にはたらくと思ったんですけど、どうして下向きなんですか??

。 基本例題30 鉛直面内の円運動 図のように,質量mの小物体が, 摩擦のない斜 面上の高さんの点から静かにすべりおりた。 斜面 の最下点は半径rの円の一部になっている。 重力 加速度の大きさをg として 次の各問に答えよ。 (1) 斜面の最下点での小物体の速さを求めよ。 om 1501 (2) 斜面の最下点で, 小物体が面から受ける垂直抗力の大きさを求めよ。 指針 (1) では, 力学的エネルギー保存の 法則から速さを求める。 この結果を用いて, (2) では,最下点での半径方向の運動方程式を立てる。 解説 (1) 最下点での速さを”とし す べり始めた直後と最下点に達したときとで, カ 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, 1 mgh= mv2 2 v=√2gh (2) 重力と垂直抗力の合力が、 最下点での小物 基本問題 213 02 m-=N-mg 体の向心力になる。 半径方向の運動方程式は, AN JON r (1)の結果を用いて, N=mg (1+ (1+2/7 ) mg Point 鉛直面内の運動は等速円運動とならな いが,各瞬間において, 等速円運動と同様の運 動方程式を立てることができる。

解決済み 回答数: 1
物理 高校生

(3)はどうして赤い字の考え方だとダメなんですか?

Ⅰ 次の文章の空欄にあてはまる数式, 図, または文章を解答群の中から選び, マーク 解答用紙の所定の場所にマークしなさい。(34点) y 0 10 m x 図1 水平方向にx軸,鉛直上向きに軸をとる。このxy面内を,大きさが無視できる [m] r 小球が運動する。 小球の質量をm[kg] とし,重力加速度の大きさをg[m/s] とする。 ひもの一端が図1の原点0に固定されていて, ひもにつながった小球が,原点0か 一定の距離 [m] を保って円運動をしている。 ひもに太さや重さはなく,空気抵抗 はないものとする。原点からみた小球の位置の方向と鉛直下向きの方向のなす角 を 0 [rad] とする。小球の速さは9によって変化し,(0) [m/s] とおく。特に, 0 = 0 における小球の速さ(0) をCMと書くことにする。小球は0の増加する方向に運動 している。 力学的エネルギー保存の法則を使うと, (1) という関係が成り立つ。 小球には重力と, ひもから受ける張力 T がはたらいている。 それらの合力のうち、 ひもに沿った方向の成分は, 向心力でなければならない。 向心力はm, v(0)に より与えられるが,その関係式は円運動が等速でなくても成り立つ。この事実を使う と、張力はT= (2) [N] と表される。 ひもがたるまずに円運動を続けるには,

解決済み 回答数: 1
物理 高校生

物理基礎です。4️⃣が分かりません😭 具体的には、 ・ばねの伸びが0.20mってどういうこと!?  0.10mがばねの伸びじゃないの? ・(3)でばねの伸びが(0.20−h)mはどういう意味?です。とにかくばねの伸びあたりが特に分かりません😭 教えて下さい🙇

ばね 【4】 重力・弾性力と力学的エネルギー ばね定数 49N/m の軽い そば ばねを天井からつるし、 静 を ギ その先端に質量 0.50kg のおもりをつなぐ。 おも りをつりあいの位置から 鉛直下向きに 0.10m 引 いて、静かにはなした。 重力加速度の大きさを 9.8m/s2, おもりをはな つりあい の位置 10.10m した位置を重力による位置エネルギーの基準 として、次の各問に答えよ。 ネ (1) おもりを 0.10m 引いたとき, ばねの伸び は何か。 位 おもりをつるしたときのばねの伸び x は,力の つりあいから、 可 mg=kxo 0.50×9.8=49xxo 求めるばねの伸びxは, x=0.10+0.10=0.20m Xo=0.10m (2) 静かにはなした直後の, おもりの力学的エ ネルギーは何Jか。 1 1 E=22mv2+mgh+zkx2 = 1 2 1 x 0.50 × 02 +0.50 x 9.80 + - × 49 × 0.202 =0.98J 2 (3) おもりが達する最高点は,はなした位置か ら何mの高さか 求める高さをh[m] とすると, ばねの伸びxは, x=0.20-h〔m〕 となる。 (2)を用いると, 力学的 エネルギー保存の法則から、 1 0.98 = x 0.50 × 02 + 0.50 x 9.8 x h 2 1 +x 49 x (0.20 - h)² 2 h=0, 0.20m h(h-0.20)=0 h≠0 から, h=0.20m

解決済み 回答数: 1
物理 高校生

物理基礎の力学的エネルギーの質問です。 私は写真の緑の文字のように考えました。ですが、答えは違い、解説に途中式も無いので、なぜこのような答えになるかがわかりません。 そのため途中式と、なぜ私の答えが違うのかもできたら教えて下さると嬉しいです!

56 〈張力のする仕事と力学的エネルギーの保存> 図のように,長さ[m] の糸の先に質量 m[kg]のおもりをつける。点○の真下 / [m]の 点Cには, くぎが打ってある。 おもりを点Cと同じ高さの点Aまで 持ち上げて静かにはなすと, おもりは点Bを通過したあと,点Cを 中心とした円弧を描いて最高点Dまで到達した。 重力加速度の大き さをg 〔m/s2〕 として, 次の問いに答えよ。 (1) 点Aから点Bにかけて糸の張力がする仕事を求めよ。 ~正答 0] (2)点Bでのおもりの速さを求めよ。 Ngl (m/s) gl(m/s) ●(3) 最高点Dの高さを求めよ。ただし、重力による位置エネルギーの基準面の高さを点Bとする。 「水と器がた 答 2 m (4)点の真下! (4)点○の真下/ [m]のところへくぎの位置を変えたとき,最高点Dの高さを求めよ。ただし,重 力による位置エネルギーの基準面の高さを点Bとする。」 Bの速さ=V 1Dの高さこん mgo+/m/g=mgh+/mo mg (1 - 1 ) + 1 mo² = mg0 + 1 mr² | mg0+1 m² 3419 = mgh + mo 1mv² = 1/4 1mg √ = 41mg mgh=lg んこし 20 2章 エネルギー

解決済み 回答数: 1
物理 高校生

問3番解説の日本語がよく分かりません。H大きくなるとLも大きくなるからと思ったらなんか色々違うみたいでよく分かりません。

AさんとBさんはHをある一定の値にして, んの値が 10.0cm, 15.0cm, 20.0cm, 25.0cm んとHの測定値から予想されたLの値(理論値) も示してある。 表1のんの値は糸の長さよりも小 の四つの場合について実験を行い,Lの測定値を表1にまとめた。 表1には, 問2の方法により, さいとする。 ThH H 表 1 g L〔cm〕 h[cm] 測定値 理論値 10.0 36.2 34.6 15.0 44.0 42.4 進んで 20.0 49.8 48.9 25.0 55.1 54.7 とき D 問3 表1の実験結果では,Lの測定値が理論値よりも大きい。この結果について,AさんとBさ んは次の(ア)~(ウ)のような誤った操作を行ったことが原因だと考えた。 (ア)~(ウ)の操作のうち,Lの 測定値が理論値より大きくなる原因となりうるものはどれか。すべて選び出した組合せとして最 も適当なものを、後の①~⑧のうちから一つ選べ。 13 L=2VWH (ア) Hの値を正しい値よりも大きめに測定した。 (イ)んの値を正しい値よりも大きめに測定した。 (ウ) た。 図2の矢印の向き(糸と垂直で上向き)にわずかに速度を与え 点Pでおもりを放すときに、 速度 おもり P 図2 ①(ア) ④ (ア)(イ) (ア)と(イ)と(ウ) ②(イ) ⑤(イ)と(ウ) ③ (ウ) ⑥ (ア)と(ウ) ⑧ 原因となりうるものはない

解決済み 回答数: 1
物理 高校生

解説は載っていますが、(1)でなぜ 1/2×9.8×0.020^2=0.010×⒐8×h という式になるのかよくわかりません。 1/2×k×x^2 と m×g×h が等しいということですか? この式で左辺と右辺がなぜイコールなのか教えてください。🙏

基本例題19 弾性力による運動 なめらかな水平面 AB と曲面 BC が続いてい る。Aにばね定数 9.8N/m のばねをつけ, その他 端に質量 0.010kgの小球を置き, 0.020m 縮めて はなす。 重力加速度の大きさを9.8m/s2 とする。 www B 基本問題 138. 146 C 0.40m (1) 小球は, ばねが自然の長さのときにばねからはなれる。 その後, 小球は,水平面 ABから何mの高さまで上がるか。 (2) 水平面 AB からCまでの高さは0.40m である。 ばねを0.10m縮めてはなすと, 小 球はCから飛び出した。 このときの小球の速さはいくらか。 指針 垂直抗力は常に移動の向きと垂直で あり仕事をしない。 小球は弾性力と重力のみから 仕事をされ, その力学的エネルギーは保存される。 (1)では, ばねを縮めたときの点と曲面上の最高点, (2)では, ばねを縮めたときの点と点Cとで,それ ぞれ力学的エネルギー保存の法則の式を立てる。 ■解説 (1) 重力による位置エネルギーの 高さの基準を水平面 AB とすると, ばねを縮め たときの点で,小球の力学的エネルギーは, 弾 性力による位置エネルギーのみである。 曲面 BC上の最高点で、速さは0であり,力学的エネ ルギーは重力による位置エネルギーのみである。 最高点の高さをん 〔m〕 とすると, x9.8×0.0202=0.010×9.8×h h=2.0×10m (2) 飛び出す速さを [m/s] とすると,点Cにお いて,小球の力学的エネルギーは,運動エネル ギーと重力による位置エネルギーの和であり、 2 ×9.8×0.10 x0.010×2 +0.010×9.8×0.40 v2=1.96=1.42 v=1.4m/s

解決済み 回答数: 2
1/24