学年

教科

質問の種類

物理 高校生

壁と衝突しても速さが変わらないのはなめらかで摩擦がないからだという解釈で合ってますか?それともただ単に反発係数について何も言われてないからですかね?🙏🏻

か 7/13 入試問題研究 ら壁に向けてボールを発射した。ボールは壁に衝突してはね返り, さらに床上の点で 図に示すように, 水平な床と鉛直な壁がある。 壁から距離だけ離れた床上の点Pか はずんだ。 壁はともになめらかであるとして以下の問いに答えよ。 ただし, 重力加速度の大きさは ボールは点Pから初速D で、 水平方向と角0をなす方向に発射されたものとし、床と gとする。 Q (1)ボールが点Pで発射されてから壁に衝突するまでの時間はどれだけか。 K)ボールが点Pで発射されてから点 Q に達するまでの時間はどれだけか。気づくこと) (3)角45°,ボールと壁およびボールと床の間の反発係数(はねかえり係数)の 大きさがともに0.5であるとき、ボールは点Qではずんだ後, ちょうど点Pにもどっ てきた。ただし、反発係数が0.5とは、壁や床に垂直な方向に衝突直前の速さの 0.5倍 の速さではね返るということである。 (ア)点Pにもどったときのボールの速度の大きさ,および水平方向となす角はどれだ けか。 (イ)の大きさはどれだけであったか。 gと1を用いて表せ。 (ウ)PQ間の距離は1の何倍か。

解決済み 回答数: 0
物理 高校生

Ⅰ(1)について. ドップラーの式を使って解き,答もあたりましたが,疑問があります.問題文に"われわれから速さv[m/s]で遠ざかっている"とありますが,これは相対的な速度のことだと思います.そうすると,ドップラーの式:"f'={(V-v1)/(V-v2)}f"に当てはめ... 続きを読む

Ⅰ 宇宙には活動的中心核をもつ銀河が数多く知られている。 それらの中心部には小サイズで巨大質量の 天体があり、その周りを厚さの薄い分子ガス円盤が高速回転している姿が明らかになってきた。 比較的穏やかな渦巻き銀河M106 は, われわれの銀河から遠く離れていて, 数100km/s もの速さで 地球から後退している。その中心付近から放射されている水蒸気メーザー (波長 入 = 0.0135m) の電波 の観測が野辺山の電波望遠鏡で行われた。 その結果, 図1のようにこの銀河の後退運動によるドップラ 一効果でずれた波長 入 〔〕 付近に数個の強い電波ピークが観測された。 その波長域の最小波長 入 〔m〕, 中心波長 入 〔m〕, および最大波長袖 〔m〕 は -=0.0016, th No -=-0.0020, (19510円)*(30 で与えられることがわかった。 1 No ic 図 1 Ac-do Zo λ2-10 20 -=0.0052 水蒸気メーザーで 輝くスポット 回転 回転 分子ガス円盤 中心天体 図2 (1) 波長 〔m〕 の電波を放射する天体が, われわれから速さ 〔m/s] で遠ざかっているとき,われわ れが観測する波長が入[m] であるとする。 vを入, 入および光速 c を用いて表せ。 (2)c=3.0×10°m/s として, 図1の波長 A, Ac, A に対応するガス塊のわれわれに対する後退速度 ひ1, vc, v2 [m/s] を ] x10m/sの形で求めよ。 には小数第1位までの数字を入れよ。 (3) ひ-vc, |v-vel の値を求めよ。 TEX Ⅰ (3) より | ひ-vc|=|vz-vel となるが, この結果は複数の放射源 ( ガス塊)が全体の中心の周りを高 速回転していることを暗示している。 ⅡI 中心波長 Ac 付近で明るく輝く複数のガス塊の運動の時間変化が調べられた. その結果, これらのガ ス塊は中心から薄いドーナツ状分子ガス円盤の内側端までの距離 Ro=4.0×10m を半径とする円軌道 を一定の速さで回転しているとするとよく理解でき, その速さは Ⅰ (3) で求めたガス塊の後退速度の差 Vo(=|u-vc|=|02-vel) と一致することがわかった。 図2に回転する分子ガス円盤の概念図を示す。 ただし、 万有引力定数をG[N・m²/kg ] とする. (1) 質量M(kg) の中心天体の周りを質量のずっと小さい (m[kg]) ガス塊が半径R [m]の円周上を速さ V [m/s] で万有引力による円運動をしているとき, ガス塊の円運動の運動方程式を記せ。 ●解説 I (1),(2) 天体の出す電波の振動数をfo (=clio) とすると, 長さc+vの 中に fo波長分の振動が含まれるから 研究 λ=c+v_c+v., -.Ao fo (3) Ⅰ(2)の結果より 2-20 20 C この結果に、問題文で与えられた 入=入, Ac, i に対する (^-入o)/20 の値,および c=3.0×10°m/s をそれぞれ代入すると ひ=(-2.0×10-3)×(3.0×10°)= -6.0×10m/s ve=1.6×10-3)×(3.0×10°)=4.8×105m/s v2=(5.2×10-3)×(3.0×10°)=15.6×10m/s ドップラー効果◆ STEFON 波源が速さで後退すると,cの長さに含まれていた波がc+v の長さ に含まれることになって、波長が伸びる。(単泉) ところで, 図のように, ある点を中心に円運動をしている天体から出る 光 (電磁波)を十分に遠方から観測する場合, 中心天体の後退速度をv, ガ ス塊の円運動の速さをVとすると, 点a, c から出る光の後退速度はvc =v, bから出る光の後退速度は dから出る光の後退速度は V, v2v+V である。ゆえに V1-Ve=-V, #PED WAXXENT v2-vc=V となる。逆に,ひ-vc|=|v2-vel であれば,ガス塊の運動が円運動であることが暗示される。 なお、M106 の後退速度はせいぜい106m/s程度で,光速の1/100 以下であるから,相対論的なドップ ラー効果の式ではなく,普通のドップラー効果の式を用いてよい。 観測者 v-v b d V FV v+V a

回答募集中 回答数: 0
物理 高校生

力学的エネルギーについての実験で、こういうのをしたんですが、 グラフはそれぞれどうなっているのが正しいんですか?

【実験】 (1) スタンドで合板を鉛直に固定する。 (2) 合板に取りつけられている木片の2つの穴に糸の両端をそれぞれ通し,つま ようじで仮留めする。 (3) 糸の中央付近におもりをつけて鉛直に吊るし,最下点でおもりの中心が、合 板の下部の高さになるように、 つまようじで糸の長さを調節する。 (4) 最下点に速さ測定器を置き、おもりの中心が速さ測定器のセンサーの中心 を通過するように, 合板の高さを調節する。 (5) 糸がたるまないようにして, おもりの中心を合板の線の高さまで持ち上げ, 速さ測定器のスイッチを入れて元の位置に戻す。 (6) おもりを静かにはなし, 最下点での速さを,速さ測定器で各自が測定する。 (7) 高さを変えて同様の実験を繰り返す。 (8) それぞれの高さごとで班内の平均の速さを求め, 平均の速さ”と高さんの 関係を グラフを描く。 グラフに記入し, (9) 平均の速さの2乗と高さんの関係を 描く。 グラフを んグラフに記入し, (10) グラフが直線になった場合は傾きを求め, 傾きが表す値の意味を考える。 (11) 実験結果について考察をおこなう。

未解決 回答数: 1
物理 高校生

大問2の方で、r <roより長方形を貫く全電流が0とあるのですが、なぜそうなるのかがわかりません。 教えていただけると助かります。よろしくお願いします。

【1】 <L813P12> 2010 長崎大学 2/25, 前期日程 医 教育工歯 水産業 環境科 次の各問いに答えよ。 試験日 問1 次の (7) から(エ)に適当な式または語句を入れよ。 AO 断面積 S, 長さ 巻き数Nのソレノイドがある。 ソレノイドに電流を流すと内部には, 中 心軸に平行で一様な磁場ができた。 この磁場の強さは,LL, N を用いると, である。 また, ソレノイドの内部の透磁率をμ とすると, ソレノイド内部の磁束密度B は, H, Mo を用 い ( となる。 ソレノイドに流れる電流Iが4時間に AI だけ増加したとすると, ソレノイドのひと巻きあた AI りに生じる誘導起電力の大きさは, S, I, N, を用いて, (ウ となる。 これを倍 N してソレノイド全体で生じる誘導起電力の大きさを表すとき、係数は れる。 導出過程を記入すること。 必要があれば,図を用いてもよい。 とよば 【2】 <L797P22> 2010 東京工業大学 3/12, 後期日程 工 (第2類) 工(第3類) 工(第4 類) 工(第5類) クラス (A) 図1に示すように、導線を半径r[m]の円形状に一様に密にN回巻いた, 長さ入[m]の円筒 形コイルが真空中にある。 なお, コイルの長さは, 半径に比べ十分に長いものとする。 真空の 透磁率を44 [N/A}]として, 以下の問いに答えよ。 番号 中心軸 氏名 得点 70000 00 00 00 00 00 図1 1 T (a) コイルに電流 [A]を流した。 このときのコイルの中心軸上における磁場の強さを [A/ml, コイルの中心軸から距離r[m] における磁場の強さをH,[A/m]とする。 ここで, 磁気量 1WB の 磁極を, 長方形ABCD の矢印の向きに沿って動かすことを考える。 このとき, IWb の磁極が 長方形ABCD 上を一周するあいだに磁気力によってなされた仕事の値[J]は, この長方形を 貫く全電流J[A]に等しいことが知られている。 すなわちW=Jとなる。 なお、図1に示すよう に, 長方形ABCD は,辺の長さが [m] およびr[m] であり、辺ABはコイルの中心軸上にある。 以上のことから,まず, <n, すなわち辺CDがコイルの内側にある場合について考え,H, Hの比を求めよ。 つぎに,,すなわち辺CDがコイルの外側にある場合について考 え, H を入, s, r,N, I のうち必要なものを用いて表せ。 (b) このとき、巻き数Nのコイルを貫く全磁束 [Wb]は, コイルの自己インダクタンス L[田に 比例してLI [Wb] となる。 Lを共 入Nのうち必要なものを用いて表せ。 なお、このコイ ルを貫く全磁束は, コイル一巻き分を貫く磁束のN倍であることに注意せよ。

回答募集中 回答数: 0
1/4