学年

教科

質問の種類

物理 高校生

名問の森の質問です。 (2)の解説部分の赤線がなぜなのかいまいちよく分かりません。教えてください🙇‍♀️

BxX 31 直流回路 電圧 100Vで使用すると, 80 W を消費する電球 L と, 40W を消費 する電球 M がある。 L, Mにかかる電圧 V〔V〕 と,電球を流れる電流 I〔A〕との関係を示す特性曲線は図1のようである。有効数字2桁で 答えよ。 19/9 名 00(1) Lに電圧 80Vをかけて使用するとき,Lの抵抗値はいくらか。ま た,消費電力はいくらか。 × (2) Lを電圧 100Vで使用しているとき,Lのフィラメントの温度は いくらか。ただし,抵抗の温度係数を2.5×10-3/℃ 室温を0℃と する。また,図1の点線はLの特性曲線の原点における接線を示す ものとする。 だから (3)図2において,Eは内部抵抗の無視できる起電力 120V の電池 Rは100Ωの抵抗である。 L を端子 XY間に連結して使用すると きLの電圧と消費電力はいくらか。ば (4)Lと100[Ω] の抵抗3本を並列にして(図3), 図2のXY間に連 結して使用するとき,Lにかかる電圧はいくらか。 × (5) LとMを並列にして、 図2のXY間に連結して使用するとき, L の消費電力はいくらか。 また, 回路全体での消費電力はいくらか。 Level (1) ★ (2) (3) (4) (5) Point & Hint Poji[C]での抵抗値は0袋)の (2)(4は抵抗の温度係数)が漁費電力 31 105 民として、R=R(1+al)と表され が大きいほど高温になる。つまり、グラ フの右上に向かって温度が高くなっている。 すると室温はどのあたりか。 706 図1を生かしたいのでにかかる圧を流れる電流を」として、キル ヒホッフの法則で関係式をつくる。一種の連立方程式の問題だが, グラフ上で解 くことになる。 (5)LとMを1つの電球とみて特性曲線をつくってみる。 LECTURE (1) 図1より V = 80[V] のとき I=0.7 〔A〕 の電流が流れるから, オーム の法則 V=RI より抵抗値 Rは R= == 80 0.7 ≒1.1×102 [Ω] 消費電力は VI = 80×0.7=56 〔W〕 RI2を用いてもよいが, VI ならダイレクトに計算できる。 10 M+J (2)V=100 〔V〕 のとき, I = 0.8 〔A〕 だから VOST V 100 R= == =125 [Ω] I 0.8 室温0℃はジュール熱の発生が無視できる原点近くの (VIが0に近い) 状態である。 [℃] での抵抗値 R のまま一定を保てば, 特性曲線は点線の 20 0.4 0.2 I[A] 1.2 225 1.0 0.8 0.6 Y 120V 100Ω RATE 図2 L IM 091 0 0 20 40 60 80 100 120 100Ω V(V) 図1 図3 ような直線となるはずだから Ro=1.0=20[Ω] よって, 求める温度を t [℃] とすると 点線のどこを 3. |使ってもよい 125 = 20 × ( 1 + 2.5 × 10-3t) .. t = 2.1×103 [℃] (3)Lの電圧、電流をV, I とすると, キルヒホッフの法則より 120 100I+V ・・・・・・ ① この関係を満たす V. Iは次図の直線(実線) で表される。 Lの特性曲線との交点が求める答 えだから V = 60[V] I = 0.6 (A) 消費電力はVI=60×0.6=36〔W〕 式①をグラフ化するとき 1次式だから直線 100Ω 120V 図 a

解決済み 回答数: 1
物理 高校生

(5)の単振動、最大の速さについての質問です!解説は理解出来てますが、2枚目にあるように単振動の位置エネルギーで表せないのはなぜですか?

114 力学 38 単振動 水平面内において一定の角速度ので 回転している円板がある。 円板上には, 半径方向にみぞが掘られており、その中 にばね定数k,自然長のばねが置かれ ている。 ばねの一端は中心0に固定され, 他端には質量Mの小球Pがつけられてい る。 Pはみぞの中を滑らかに動け, 0 か つ らPまでの距離rを用いておもりの位置を表す。 いま、円板上で静止 している観測者Aには, Por=ro の点に静止して見えた。 真上から見た図 Level (1), (2)★ (3)~(5)★ Point & Hint W (1) ro をlk, M, ω を用いて表せ。 (2) こうなるために必要な角速度に対する条件を表せ。 次に,Pをみぞに沿って外側に動かし, 点0 からの距離 n の点で静 かにPを放したところ, P はみぞの中で運動を始めた。 (3) Pが位置にあるときAが見る加速度をaとすると, A が書くべ き運動方程式はどのようになるか。 みぞ方向外向きを正とする。 (4) Pの位置を,rの代わりに ro から測ってx=r-ro を用いて表 すと, 運動方程式の右辺の力はLx の形になる。 Lをk, M, ω を 用いて表せ。 (5) Pを放してからばねの長さが最小となるまでの時間, ばねの長さ の最小値,およびAが見るPの最大の速さをk, M, w, ro, n, のう ち必要なものを用いて表せ。 (北海道大) Aにとっては遠心力が現れている。 (2) (1) の答えの形から自然に条件が決まってくる。 (5) (4) の結果からPの運動が確定する。 P the p LECTURE (1) 遠心力と弾性力のつり合いより Mrow²=k(ro-l ... (2)>0より kl Yo= k-Mw² k-Mw² > 0 k w√ M 回転が速過ぎると(ωが大き過ぎると),弾 性力より遠心力がまさり つり合う位置がな くなってしまう。 (3) ばねの伸びは -l と表せるから Ma=Mrw²-k(r-1) (4) 上式に r = ro+x を代入すると ( 38 単振動 •mmmm 自然長 遠心力がかかるから, | ばねは伸びているはず。 ①を用いた 115 遠心力 Mをmと書いてい ないだろうか? 物体上から見たとき 向心 外から見たとき ▷じゃ Ma = M(ro+x)w² − k(ro+x-1) ) =Mxw²2-kx =-(k-Mω²)x ......2 ∴. L=k-Mo² (2)で求めた条件よりLは正の定数であり,②はPがx=0(力のつり合 い位置)を中心として単振動をすることを示している。 (5) ②から単振動の周期Tは M 最大の速さは、 公式 Vmax = Aw より [ro を代入する) より速い Queeeeeeeeeeee- 0 Yo T=2nvk-M²2 2π√ とする誤りが多い。ばね振り子の周期 k が不変となるのは、ばねの力のほかに一定の力 がかかる場合のことである。 遠心力は半径と ともに変わる力である。 ばねの長さが最小となるのは, 内側の端の位置にくるときだから、端か ら端までの時間は半周期。よって, M T= √k-M₁² 振幅Aは上図より, A = n-ro よって, ばねの長さの最小値は ro-A=2ro-n # A 中心 k-Mos² A² = (n-1)√² M

回答募集中 回答数: 0
物理 高校生

名問の森の質問です! ?のところのV1とV2の向きがなぜそうなるか分からないので教えて下さい!

122 電磁気 38 電磁誘導 十分に長い直線導線Lがy軸上 にあり, 1辺の長さ2aの正方形コ イル ABCD が 辺ABをx軸上に, 辺BC を軸に平行にして置かれて いる。 コイルの電気抵抗は R で, コ イルの位置は辺ABの中点Mの座 標xで表す。 装置は真空中に置かれ, 真空の透磁率 μlo とする。 コイルの 自己誘導は無視する。 Foll 導線L に+yの向きに一定電流Iを流し,コイルを一定の速さ で,xy平面上,x軸に沿って導線から遠ざける。コイルがx(a)の 位置を通過するときについて, (1) L による,点A,B での磁場の強さ H1, H2 をそれぞれ求めよ。 (2) コイル全体での誘導起電力の向き (時計回りか反時計回りか)と大 きさVを次の2つの方法で求めよ。 Level (1)★★ (2) (a)★ (b)★ (3)★ Point & Hint 電磁誘導は一般にはファラデーの電磁誘導 の法則に従っている 0 (2) (b) 微小時間⊿tの間の磁束の変化⊿のを調 べる。 といっても, コイルを貫く磁束のはコイ ル内の磁場が一様ではないので(積分しない限 り) 計算できない。 そこで, 変化した部分だけ に目を向ける。 近似の見方も必要。 L D A -2a- M C B (a) 1つ1つの辺に生じる誘導起電力を調べる。 (b) コイルを貫く磁束の変化を調べる。 (3) x=2aのとき, コイルに加えている外力の向きと大きさを求め よ。 (九州大+お茶の水女子大) -V Base 電磁誘導の法則 磁束① = BS V=-N40 4t 一面積S N巻きコイル ※マイナスは磁束の変化を 妨げる向きに誘導起電力 が生じることを表す。 LECTURE (1) A,Bでの磁場は ? I H₁ = 2π (x− a) 2π (x+a) (2a) 直線電流Ⅰのつくる磁場は紙面の裏へ の向きとなり、磁力線を切って進む AD と BCで誘導起電力 V1, V2が図の向きに発生 している。公式V=vBlより V₁ = vμoH₁.2a V2= vμoH22a 2つの起電力が逆向きとなっていることと, H>Hより全体の起電 力は時計回りで (b)微小時間tの間にコイルはx=v4t だ け動き,右の赤色部分で磁束を402 増やし、 灰色部分で4の減らす。 そこで,磁束の変化 40は H2= 40= 40₂ 40₁ =μoH22a4xμoHi・2a4x 2μo lav π (x²-a²) At 符号マイナスは磁束の減少を表している (H) > H2 より定性的にも明らか)。 よっ て, 誘導起電力の向きは、父の向きの磁場 を生じるようにコイルに電流を流す向きで あり、時計回りと決まる。 40=2μoIav V = π (x² - a²) 4t V=V1-V2=2μova (H1-H2)= 2μo Iav π (x²-a²) (3) x=2a より V= 2μo Iv であり、誘導電流 3π えは時計回りに流れ, オームの法則より i = R 38 電磁誘導 2μo Iv 3πR V₁ H₁ v A -x+a H₁ 4x F D 123 H 2 V i V2 A ⊿xは微小なので ③ 磁場はHやHで 一定としてよい。 B H2 4x C i F2 B Iとの向きから, ③ F は引力, F2は反 発力と決めてもよい。

回答募集中 回答数: 0
物理 高校生

(2)番についてです 自分は位置エネルギーと大気圧への仕事も考えてW=pΔv+MgL/2+p0ls/2 と考えたのですが、解答では位置エネルギーとか考慮していません。なぜですか?

142 熱 49 熱力学 断熱材で作られた円筒形の容器に〔mol]の 単原子分子の理想気体が入っていて、圧力と温 TOK] は大気のそれと等しい。 ピストンMの 質量は 〔kg] で滑らかに動く。はじめMはス トッパーAで止まっており、容器の底からの高 さはLQm] である。 気体定数をR [J/mol・K], 重力加速度(m/s²] とする。 (1) ヒーターのスイッチを入れて気体を加熱し たところ, 温度が T1 [K] になったときM が上に動き始めた。温度 T と気体に加えた熱量 Q1 〔J〕 を求めよ。 (2) Mはゆっくり上昇を続け高さが2.2L[m]となった。このとき の温度 T [K] を求めよ。 また,Mが動き始めてからこのときまで に気体がした仕事 W 〔J〕 と気体に加えた熱量 Q2 〔J〕 を求めよ。 ここでヒーターのスイッチを切った。 そして,外力を加えてMを ゆっくりと押し込み、元の高さL 〔m〕まで戻した。 このときの気体 の温度 T3 〔K〕 を求めよ。 また, このとき気体がされた仕事 W 〔J〕 を求めよ。 ただし、この断熱変化の過程では圧力と体積Vの間に (京都工繊大) はPV =一定の関係がある。 Base M ヒーター 10000 Cv= Level (1), (2)★ (3)★ Point & Hint (1) 前後の状態方程式と、ピストンが 動き始めるときの力のつり合いを押さ える。 大気圧をPo, ピストンの面積をS とでもおくとよいが,これらの文字は 答えには用いられない。 (2) なめらかに動くピストンが自由になっていると 定圧変化が起こる。 定圧変化では, 気体がする仕事 = PAVとなる。 (3) 断 熱変化では,PV=一定が成り立つ。 γは比熱比とよばれ, y=Cp/Cv ここで は単原子なので,y= =1/12/2/12/2R=7/3/3 となっている。あとは第1法則の問題。 5 h= 単原子分子気体 nRT U= 3 5 = 2R CP=R 2 ※ この3式は「単原子」のとき LECTURE 初めの気体の状態方程式は ピストンが動き始めるときの圧力をPとすると PSL = nRT …..……② (1) そして,このときのピストンのつり合いより PS = Pos+Mg...... ③ T₁=To+ _MgL nR4 ①〜③ より 定積変化だから より (2 そして (2) Pi での定圧変化が起こる。 状態方程式より P₁S³/L=nRT₂ また, Q=nCvAT= PSL = nRTo ...... ① T₂ = ³2 T₁ = 3 (To+ MgL nR W2 = Pi4V = Pi P.(S. 3/L-SL) Q2=nCpAT = n 状態方程式より 5 2 第1法則より より 49 熱力学 nR(T₁-To) = MgL 2 2 T3= ③ -T₁ (3) 高さまで押し込んだときの圧力をP3とすると P.(S-L)* = P.(SL) P3= 3 PS を用いて. Ws = Mg AU』を調べ ( 4U2=2R(T-T)) 第1法則 4U2 = Q2+(-Wa) を用いて Qを求めることもできるが、まわりくどい。 =1/12P.SL=1/12nRT=1/12(nRT,+MgL) ②を用いた .. T = n. 52 R (T₂ - T₁) = (nRT. + MgL) 143 ピストンが動いて も上図の状況は変 P.S わらない。 つまり, 圧力 P1 は一定 'P・SL = nRT3 ...... ⑤ - (3) ³T = (3) (T. + MgL) 'T nR 2nR (T₁-T₂) = 0 + W₁ P1 = (2)(2)-1) (nRT. + MgL)

回答募集中 回答数: 0
1/2