学年

教科

質問の種類

物理 高校生

なぜFが出てくるのか分かりません。 教えてください🙏🏻

の 基本例題11 接触した2物体の運動 水平でなめらかな机の上に質量がそれぞれ 2.0kg, nois cg 3kg 2kg B 3.0kgの物体A, B を接触させて置く。 A を右向きにA Mat 20N の力で押し続けるとき, 次の各問に答えよ。 大 (1) A. B の加速度の大きさはいくらか。 A,B 太さはい (2) A,Bの間でおよぼしあう力の大きさはいくらか。 指針 2つの物体が接触しながら運動して いるとき, 作用・反作用の法則から、 2つの物体 は、大きさが等しく逆向きの力をおよぼしあって いる。 A, B が受ける力を図示し, それぞれにつ いて運動方程式を立て, 連立させて求める。 解説 (1) AとBがおよぼしあう力の大 きさをF〔N〕 とすると, 各物体が受ける運動方 A F[N] F[N] 20N B [a[m/s2] AM 20N 基本問題 87,96 向の力は、図のようになる。 運動する向きを正 とし,A,Bの加速度をα 〔m/s2] とすると, そ れぞれの運動方程式は, A:2.0×a=20-F ... ① B:3.0×α=F ...2 式 ①,②から、a=4.0m/s2 (2) (1) の結果を式②に代入すると, [M] V3.0×4.0=F F=12N Point A,Bをまとめて1つの物体とみなすと, 運動方程式は, (2.0+3.0)a=20 となり, a が 求められる。 しかし, F を求めるためには、物 体ごとに運動方程式を立てる必要がある。

解決済み 回答数: 1
物理 高校生

(1)の解き方も理解できるんですが、僕はこの問題解く時に先に(2)といてから(1)を求めようと思い、 (2)で角速度が4と出たので (1)をω=T分の2π(1周で回転する角度)の式に当てはめたら答えが会いませんでした 何故か分からないので教えて欲しいです

C D No. Date Av 指針 糸の張力が等速円運動の向心力の役割をしている 2πr 解答(1)等速円運動の周期の式「T= V よりT= 2×3.14×0.50 2.0 ≒ 1.6s (2) 等速円運動の速度の式 「v=rw」 より -=4.0rad/s V 2.0 @=L r 20.50 (3)等速円運動の加速度の式 「α=rw'」 より α = 0.50×4.02=8.0m/s² 第4章 等速円運動慣性力 31 基本例題 12 等速円運動 >>44,45,47,48 なめらかな水平面上の点に, 長さ 0.50mの軽い糸の一端を固定し,他端に質量 1.0kgの物体をつけ, 速さ 2.0m/sの等速円運動をさせた。 (1) 等速円運動の周期 T [s] を求めよ。 (2) 物体の角速度w [rad/s] を求めよ。 (3) 物体の加速度α 〔m/s²] の向きと大きさを求めよ。 (4) この運動を続けるのに必要な向心力 F〔N〕 の向きと大きさを求めよ。 (5) 糸が18N までの張力に耐えられるとするとき, 最大の角速度ω' 〔rad/s] を求めよ。 (5) 角速度が最大のとき F=mrw=18 Mising 基本例題 13 慣性力 一定の大きさの加速度αで進行中の電車の天井から 質量mのおもりを糸でつるした。 電車内の人には,糸 が鉛直方向から角度0傾いて静止しているように見え た。 重力加速度の大きさをgとする。 (1) 電車の加速。 適向きのどちらか 0 向きは円の中心点0を向く。 (4) 等速円運動の向心力の式「F=mrw²」より F = 1.0×0.50×4.0² = 8.0N 向きは円の中心点0を向く。 ( 0.5 a OKASE が成りたつ。 F = 1:0×0.50×ω^=18 よってω^2=36 ゆえにω' =6.0rad/s 人物体 20m (5 ア 51,52,53,54 ウ

解決済み 回答数: 1
物理 高校生

なぜこれは青線の部分のようになるのでしょうか?考えても考えても分かりません

期 : 1.3s, 速さ:6.0m/s, 回転数 : 0.80 回転 円の中心に向かう向き, 大きさ: 30m/s² N 22×3.14 1 accor ●センサー 37 円運動では,地上から見た 場合,実際にはたらく力の みを考え, 遠心力は考えな い。 物体から見た場合, 実 際にはたらく力のほかに遠 心力を考える。 遠心力=mrw²=m r 向きは,円の中心から遠ざ かる向き。 例題 31 等速円運動 右図のように,長さLの軽くて伸びない糸の一端につけ た質量mのおもりが、水平面内で角速度の等速円運動を している。糸が鉛直線となす角を0. 重力加速度の大きさを gとする。 +++ 125 [センサー 37 センサー 38 円運動では tbt the 物体が円運動するときは,必ず円の中心に向かう向きの力がはたらい (1) 地上から見たとき, おもりにはたらく力の名称を答えよ。 (2) おもりから見たとき おもりにはたらく力の名称を答えよ。 (3) おもりにはたらく同心力の大きさをmg0で表せ。 また,m, L, 0.0 も表せ。 (4) 遠心力の大きさをm, L, 0,ωで表せ。 また, 向きを答えよ。 解答 (1) 重力, 張力 (2) 重力,張力, 遠心力 PES (3) 実際にはたらく力である重 力と張力の合力Fが向心力と なるので, F = mg tand また,円運動の運動方程式よ y, m (L sin0) w² = F したがって F=mLw'sin ANCOT →(4) f=mrw² より, mLw'sing 例題 32 慣性力 104pm- 5 St 右図のように、傾きの角8のなめらかな斜面をもつ台 A の上に質量mの小物体Bを置く。Aを水平方向左向 きに大きさの加速度で動かしたところ,Bは斜面上で 静止した。重力加速度の大きさをgとする。 (1) 加速度の大きさαをg, 0 を用いて表せ。合 (2) BがAから受ける力の大きさはいくらか。 解答 (1) 台Aとともに 地上から 見る 1- 127 133 135 F 0 張力T m 向きは円運動の中心0から遠ざかる向き FOLT 重力 mg O 0 0 L おもりから見 張力 題 33 [○] 遠心 度で 大き (1) 右目 重力 mg きさ き 円運 解く m遠心遠 半 131 132 135 136 O かた A 動

解決済み 回答数: 1