学年

教科

質問の種類

物理 高校生

⑴のアで温度がT1>T、T>T2はどうして分かるんですか?

(2002 岐阜大・改) ③ 下記の問いに答えよ。 数値については有効数字3桁とする。 断熱容器の中の質量 m1 〔g〕, 温度 T1 [K] の水に, 質量 m2 〔g〕, 温度 T2 [K] の水を加えてかくはんし 放置したところ、 温度が T〔K〕 となった。このとき水の比熱を4.19J/(g・K)とすると, 熱量が不変ということか ら,アという関係が成立する。 この関係は水について成立するが, 水以外の物質との間では成立しな い。 そこで,水以外の物質については,以下の式で定義される量 (換算水量と呼ぼう)を考える。 換算水量 〔g〕= 水の比熱[J/(g・K)〕 銅製容器へ たとえば,比熱 0.390J/(g・K) の銅41.9g の換算水量は3.90g である。 この換算水量の考えを用いる と, 換算水量 M 〔g〕, 温度 Ti [K] の物質と, 換算水量 M2 〔g〕, 温度 T2 [K] の物質を接触させて放置し, 平衡温度 T〔K〕に達したとすると, 熱量が保存されていれば, イという関係が成立する。 換算水量の考えを用いて固体の比熱を測定する方法がある。 図はその装置(熱量計)を示す。外部との熱の出入りを断ち切る 断熱槽の内部に水を入れた銅製容器が置かれている。 容器中 の水の温度を測るため, 水銀温度計が図のように取り付けられて いる。まず,比熱 c[J/(g・K)] の試料(質量m[g])を, 温度 73 〔K〕 に一様に加熱して, 断熱槽中の温度 T [K] の水(質量m[g])を 入れた銅製容器の中に投入する。 その後ふたを閉じ、 水をかく はんして放置した結果, 平衡温度 to 〔K〕になったとする。このと き、試料の失った熱量はウ[J] である。 この失った熱量は, 銅 製容器中の水、銅製容器, 銅製かくはん棒および水銀温度計の水没部分の得た熱量に等しい。 ここで、 銅製容器, 銅製かくはん棒, 水銀温度計の水没部分を合わせた換算水量をw〔g〕と表すと, 得た熱量の 総計はエ[J] である。 そこで, 失った熱量と得た熱量との関係から、比熱 c [J/(g・K)] は, 熱量計 オ [J/(g・K)] として求まる。 熱量計の換算水量 w〔g〕 は, 関与する物質の比熱と質量とから求められるが、 次のように実験的に求 めることもできる。 熱量計の銅製容器に質量 ms〔g〕, 温度 Ts [K] の水を入れておく。 この中に温度 T〔K〕(>Ts〔K〕), 質量m[g] の水を加えてかくはんし、全体が温度 [K]となったとする。 このとき, 加え られた水によって熱量計に与えられた熱量はカ[J] であり, 銅製容器中にはじめにある水と熱量計と が受けた熱量は、換算水量w [g] を使うとキ [J]で表せる。両者は等しいので, w=[g] として求 まる。 物質の比熱[J/(g・K)〕 -×物質の質量 〔g〕 水銀温度計 ふた 断熱槽 銅製かくはん棒 試料 具体的に鉄の試料の比熱を求めてみる。 熱量計の換算水量が計算の結果 9.00g となった場合, 164g の水を入れた熱量計(水温 15.7°C)に 98.4℃に加熱した試料(質量 41.9g)を投入し、ふたを閉じてかくは んしたところ水の温度は17.8℃に上昇した。 (1) ア~クに適当な式をあてはめよ。 (2) 鉄の比熱 cを求めよ。

解決済み 回答数: 1
物理 高校生

!!!至急お願いします!!! (2)の解説をお願いします🙏

基本例題56 電場の合成 xy平面内で, A(-4.0m, 0),B(4.0m, 0) の2点に, それぞれ +5.0×10-C, -5.0×10-°Cの点電荷が固定 されている。 次の各問に答えよ。 ただし, クーロンの法 則の比例定数を 9.0×10°N・m²/C2 とする。<p (1) Aの電荷がP(0, 3.0m) の点につくる電場の強さ と向きを求めよ。 (2) A,B の電荷がPにつくる合成電場の強さと向きを求めよ。 正電荷は電荷から遠ざかる向き,負 指針 電荷は電荷に近づく向きの電場をつくる。 (2) は, A,Bの電荷が単独でPにつくる電場をそれ ぞれ求め,平行四辺形の法則を用いて合成する。 解説 (1) Aの電荷がPにつくる電場を EAとする。 EAの向きは, Aの電荷が正なので, APの向きとなる。 AP間の距離は √ 3.02+4.0² = 5.0m なので, 電場の強さE は, Ek から re Ex = 9.0×10°× 5.0×10-6 5.02 =1.8×10³ N/C y[m〕↑ 50000 (-4.0, 0) 基本問題 438, 442 f (2) B の電荷がPに つくる電をと すると, A,Bの各 電荷がつくる電場は, 図のように示される。 A,Bの電荷の大 40 P(0.3.0) TIED = 2.88×10°N/C A [50] (4.0, 0) 15.0 1441 A 4.07 B) x[m] P E 13.0 0 EB x B Ex きさは等しく, APBP から, EA=EBである。 合成電場はx軸の正の向きとなる。 電場の 強さEは, UE=EAcos0x2= (1.8×10³) x 4.0 X- 5.0 2.9×103N/C ×2 第V章 S 電気 9

解決済み 回答数: 1
物理 高校生

(5)番なんですがN>=0は分かるのですがそれ以降が分かりません。わかりやすく教えて欲しいです。

31 鉛直方向への物体の単振動 ばね定数kのばねを鉛直に立て, 床に固定する。 (1 ねの上端に質量mの薄い板Bを取りつけ,板の上 00 に質量 M の小球 A を乗せると,自然長からだけ縮 B- んで静止した。このつりあいの位置をx=0 として, 鉛直上向きにx軸をとる。 また, 重力加速度の大きさ をg とする。 (1) ばねの縮みαを求めよ。 & DUH 次に板 B をつりあいの位置から、さらに6(>0) だけ下げて静かに放すと, AとBは一体となり単振 動した。 (2) 小球 A と板Bの単振動の周期を求めよ。 (3) 位置 x における,小球Aの速さを求めよ。 (4) 小球 A が板 B から受ける垂直抗力N をxの関数として表せ。 MOO AUSSE 出題パターン (5) 小球Aが板 B から離れないの条件を求めよ。 516100-2 .. a= 折り返し点は速さ0で静かに放し た x = - b と,振動中心に対して対 称の位置にあるx=bo 自然長はx=a の点。 102 漆原の物理 力学 解答のポイント! さぶ A,B間に働く垂直抗力をNとして, A, B それぞれの運動方程式を立て, N を求めAがBから離れる 垂直抗力N=0を用いる。 magn 下向きにとるこ 解法 (1) 問題文の図で,力のつりあいより, (M+m)g=ka M+m ① k 単振動の解法3ステップで解く。 (1+0) S** STE | 1 x軸は与えられている。 DRS STEP2 振動中心は、つりあいの(自a 位置x=0の点。 g Baiepm x1 (中) 0x a+ 上 Lau T-e ポイント!! 今後の式変形に,この式を フル活用することになる。 必ず向きを そろえる AV Spreeeeee da at, af Mg mg 図9-8 2000円 A k(a-x) B IN 「縮み a-x (1+0)S STEP3 図9-8のように, 加速度をα, A,B間の垂直抗力をNとす ると,図9-8 より A,Bの運動方程式は, (1+n)S

解決済み 回答数: 1