学年

教科

質問の種類

物理 高校生

2番の問題の時って、入射してる時のVは波長変わる前と変わらない、fだけ長くなる 屈折したあとはfは入射してる時と変わらない であってますか あと屈折したあとの光の速さは633の時より遅くなりますよね

A 屈折率nの物質中では, 光の速さが空気中の速さの一になる。 屈折率は光の波 17643 KM MOTOR SE J n *86 【8分・20点】 ke& 長によって異なり, 水の屈折率は可視光線の範囲では, 図1に示すように波長が長く なるにつれて減少する。ただし,空気の屈折率は1とする。 いま図2に示すように, 空気中から水槽に入射角iで 633nm (赤色) のレーザー光 を入射したところ, 光線は水中では図のように屈折角の方向に進んだ。 205 明 **** 1.345 の1.340 屈 折 1.335 率 1.330 レーザー光 JAN G 1 400 450 500 550 600 650 波長(nm) 図1 ONES 151 図2 OTHEOS こる側の 問1 レーザー光の水中での波長と振動数は,空気中のそれに比べるとどのようにな るか の ① 波長も振動数も変化しない。 ②波長は長くなり,振動数は変化しない。 ③波長は短くなり, 振動数は変化しない。 ④ 波長は変化せず, 振動数は大きくなる。 ⑤ 波長は変化せず, 振動数は小さくなる。 問2 レーザー光の波長を 515nm (緑色) に変え, 同じ入射角で入射したとき,水中 に入った光は,633nmの場合に比べてどのように変化するか。 ① 屈折角も, 光の速さも一定で変化しない。 ② 屈折角 ③ 屈折角 ④ 屈折角 がわずかに大きくなる。 ⑤ 屈折角がわずかに小さくなる。 光の速さが大きくなる。 は一定のまま, 光の速さが小さくなる。 は一定のまま,

回答募集中 回答数: 0
物理 高校生

下の問題に置いて、TとμNが、もし等しい関係にあり、糸を引く力を大きくした場合、物体はどのように動きますか?滑りながら傾くのですか?

基本例題22 物体が傾く条件 図のように、質量がm で, 縦, 横の長さがん, lの直方体の一 様な物体を水平であらい床の上に置き, 物体の上端に糸をつけ て水平に引く。重力加速度の大きさをgとする。 (1) 引く力の大きさがTをこえたとき, 物体は床の上をすべる (2) (1)のようになるための床と物体の間の静止摩擦係数μの条件を求めよ。 ことなく図の点Pの位置を軸に傾き始めた。 T を求めよ。 指針 (1) 物体が傾き始めるとき, 物体の底面は床から浮き上がるが, 端の点Pだけは床に接した ままである。このとき、垂直抗力Nと静止摩擦力の作用点は点Pにある。 (2) 傾き始めるときの静止摩擦力Fが, 最大摩擦力μN より小さければよい。 解答 (1) 物体にはたらく力は図のようになる。 物体 は点Pの位置を軸に傾き始めるので,垂直 抗力Nと静止摩擦力Fはともに点Pにはた らく。 点Pのまわりの力のモーメントのつ りあいより mgx/1/13-1 T×h=0 よって 2 (2) 水平方向の力のつりあいより T=mgl 2h T-F=0 よってF=T=mgl 2h 鉛直方向の力のつ りあいより N-mg=0 よって N = mg 物体が床の上をす べることなく傾き 始める条件は F<μN よって したがって μ> mg mgl 2h ĮERTA 2h 1 2 F N <μxmg 9端C棒(1 93- 端に Ch 棒 (2) 9. 水 な お (1 (2

回答募集中 回答数: 0
物理 高校生

a≠0,b≠0,であり、aベクトルとbベクトルは平行でないという、記述は、一次独立であることを述べることと解説されているのですが意味がわかりません。簡単に説明してくれるとありがたいです

562 例題 335 交点の位置ベク △OAB において, 辺OA を 2:1に内分する点をE, 辺OB を 3:2に内分 する点をFとする。 また, 線分 AF と線分BE の交点をPとし、直線OP と辺ABの交点を Q とする。 さらに, OA = a, OB = 6 とおく。 (1) OP をd, を用いて表せ。 (2) OQをa, を用いて表せ。 (3) AQ:QB, OP:PQ をそれぞれ求めよ。 思考プロセス 見方を変える (1) 点P (2) 点Q 線分 AF 上にある ⇒ 線分 AF をs: (1-s) に内分とする。 OP = (1-s) +s 線分 BE 上にある ⇒ 線分BE を t : (1-t) に内分とする。 OP=(1-t) +t (1) 点Eは辺 OA を 2:1に内分す 2- る点であるから OE= 14 直線 OP 上にある ⇒OQ=kOP 点 F は辺OB を 3:2に内分する 3 点であるから OF 線分AB上にある ⇒ 線分AB をu: (1-u) に内分とする。 OQ=(1-u) +u Action》 2直線の交点の位置ベクトルは, 1次独立なベクトルを用いて2通りに表せ これを解くと よって = OP = a = 0, 60 であり, a と 2 ①② より 1-s= 3 a 3 -b 5 AP:PF=s: (1-s) とおくと OP = (1-s)OA + sOF = (1-s)a+sb S= 5 9' a+ BP:PE=t: (1-t) とおくと 2 OP = (1-t)OB+tOE = ta+ (1-t)b tかつ 9 a +Ⓡ t = -b 3 S A 2 Ⓒ a + Ⓡi (2) 140 = a + Ⓡi は平行でないから, 3 la + @ b 1-s ²³/²s=1-t S ③ ・・・① B 1次独立のとき =ウ The S 1次独立のとき 4 -1-s F A 点Pを△OAF の辺 AF の内分点と考える。 0 E ith B 点PをOBEの辺BE の内分点と考える。 1次独立であることを 述べる。 ① または②に代入する。 と ま 2 Po 綾

回答募集中 回答数: 0
物理 高校生

6番の答えはこれでもいいですか?(3/2 nRΔT) またnCvΔTでなければならない場合、それはなぜですか?

& C. 192 マイヤーの関係式 気体の物質量をn, 定圧モル比熱をCp, 定積モル比熱を 気体定数を R とする。 定積変化において温度変化が AT であるとき,吸収した熱量は n, Cv, 4T を用いて. ① となる。 熱力学第1法則より,このときの内部エネルギー の変化は,n, Cv, 4T を用いて, ②となる。 圧力 右図のような A→Bの変化 (定圧変化) を考える。 A→B において圧力がp, 体積変化がAV とすると、気体が外部に B した仕事 W は, p, AV を用いて, w=③ となり,さら ⊿V に理想気体の状態方程式を用いて変形すると, n, R, ⊿T を用いて, W=④ となる。 また, A→Bにおいて温度 16-17 PANE MOTHE OV V+AV 体積 変化が ⊿T であるとき, 吸収した熱量Qは, n, C, AT を 用いて Q = (5) となる。 A→Bでの内部エネルギーの変 化 4U は, AC (等温変化) とC→B(定積変化)とでの内部エネルギーの変化の和に等 ② を用いて, 4U ⑥ となる。 熱力学第1法則より QW.U TASAVE = しいので, Q, W, AU の関係が導かれる。これをマイヤーの関 の間には ⑦の関係があるので,C,=⑧ 係式という。 単原子分子の場合, Cp= 9 二原子分子の場合,C,=⑩0 となる。 ヒント PA .T+4T WCT

回答募集中 回答数: 0