物理
高校生

6番の答えはこれでもいいですか?(3/2 nRΔT)
またnCvΔTでなければならない場合、それはなぜですか?

& C. 192 マイヤーの関係式 気体の物質量をn, 定圧モル比熱をCp, 定積モル比熱を 気体定数を R とする。 定積変化において温度変化が AT であるとき,吸収した熱量は n, Cv, 4T を用いて. ① となる。 熱力学第1法則より,このときの内部エネルギー の変化は,n, Cv, 4T を用いて, ②となる。 圧力 右図のような A→Bの変化 (定圧変化) を考える。 A→B において圧力がp, 体積変化がAV とすると、気体が外部に B した仕事 W は, p, AV を用いて, w=③ となり,さら ⊿V に理想気体の状態方程式を用いて変形すると, n, R, ⊿T を用いて, W=④ となる。 また, A→Bにおいて温度 16-17 PANE MOTHE OV V+AV 体積 変化が ⊿T であるとき, 吸収した熱量Qは, n, C, AT を 用いて Q = (5) となる。 A→Bでの内部エネルギーの変 化 4U は, AC (等温変化) とC→B(定積変化)とでの内部エネルギーの変化の和に等 ② を用いて, 4U ⑥ となる。 熱力学第1法則より QW.U TASAVE = しいので, Q, W, AU の関係が導かれる。これをマイヤーの関 の間には ⑦の関係があるので,C,=⑧ 係式という。 単原子分子の場合, Cp= 9 二原子分子の場合,C,=⑩0 となる。 ヒント PA .T+4T WCT
192₁ On Cv 4] QnCUAT DPAV QnRAT On pat D === nRAT NOVAT 2Q=w+40 R Cp = Cu + R R ER

回答

まだ回答がありません。

疑問は解決しましたか?