学年

教科

質問の種類

物理 高校生

(2)についてです なぜ(1)でつくった式の➀か②を代入したら及ぼし合う力の大きさが求められるのかわかりません どなたか教えていただけると幸いです  よろしくお願いします

第Ⅰ章 運動とエネルギー 基本例題11 接触した2物体の運動 基本問題 ma 3kg 2kg B 水平でなめらかな机の上に, 質量がそれぞれ2.0kg, 3.0kgの物体A, B を接触させて置く。 A を右向きに 20N の力で押し続けるとき, 次の各問に答えよ。 (1) A, B の加速度の大きさはいくらか。 (2) A, B の間でおよぼしあう力の大きさはいくらか。 ■指針 2つの物体が接触しながら運動して いるとき, 作用・反作用の法則から、2つの物体 は,大きさが等しく逆向きの力をおよぼしあって いる。 A, B が受ける力を図示し, それぞれにつ いて運動方程式を立て、 連立させて求める。 ■解説 (1) AとBがおよぼしあう力の大 きさをF〔N〕 とすると, 各物体が受ける運動方 f 20N 向の力は、図のようになる。 運動する向きを正 とし, A, B の加速度をα 〔m/s2] とすると, そ れぞれの運動方程式は, A: 2.0×α=20-F ... ① B:3.0 xa=F ... ② 式①,② から, a=4.0m/s2 (2) (1)の結果を式 ② に代入すると, 3.0×4.0 =F F=12N m B Point F[N] [F[N] [a [m/s2] A 20N A,Bをまとめて1つの物体とみなすと, 運動方程式は, (2.0+3.0)a=20となり, αが 求められる。 しかし, F を求めるためには,物 体ごとに運動方程式を立てる必要がある。 P= 基本例題12 連結された物体の運動 ◆基本問題 88, 92

解決済み 回答数: 1
物理 高校生

物理の棒の釣り合いの問題です。 棒の質量は1.0kgなのに、なぜ棒の重力?(真ん中にかかる力)は1.0gなんですか?

8 第1編力と運動 Let's Try! 例題 5 棒のつりあい 長さ20cmで質量 1.0kg の一様な棒ABの両端におもりをつるし, Aから 7.0cm の点Pに糸をつけ, 天井からつるした。 このとき糸の張力は98Nとな り棒は水平につりあった。 A, B につるしたおもりの質量 ma, mB [kg] を 求めよ。 重力加速度の大きさを g=9.8m/s^ とする。 指針 未知の力 (おもりの重力) がA, B に加わるので,その一方の点のまわりの 力のモーメントのつりあい, および鉛直方向の力のつりあいを考える。 解答 点Aのまわりの力のモーメントのつりあいより 10g × 7.0-1.0g×10-mg×20=0 鉛直方向の力のつりあいより よって mB=3.0kg 10g-mag-1.0g-3.0g=0 よって mA=6.0kg -6 解説動画 7.0cm P リードC リード C 例題 F=98N=10×9.8N =10g (g=9.8m/s2) 棒の 長さの軽 この棒に質量 30°の角をな 擦力の大き 指針 A 解答 棒に モーメ 鉛直 7.0cm A P B 10 cm 10cm 1.0g MBg 水 Imag 5. 剛体のつりあい 共通の軸をもち, 半径が10cmと30cmの2つの円板を固定した 装置がある。 軸を水平に支え, 図のように2つのおもりを下げたとき,円板はどちらにも回 転しなかった。 おもりBの質量m[kg] を求めよ。 30cm 10cm- A B 6.0kg m 7. 棒 14

解決済み 回答数: 1
物理 高校生

物理基礎の問題です! 類題の(4)を教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

例題① 電熱線による発熱 1kWh=10Wh=3.6×10J 3.6×10³ J ある長さの電熱線に100Vの電圧をかけると, 消費電力が400W であった。 次の問いに有効数字2桁で答えよ。 ただし, 電熱線の単位長さあたりの抵抗値 は変わらないものとする。 (1) 電熱線には何Aの電流が流れるか。 (3) (2)電熱線の抵抗値は何Ωか。 かかるか。 ただし, 電熱線の発熱量の30%は周りに逃げるものとし, 水の この電熱線を用いて, 16℃の水300gをあたためて100℃にするには何s 比熱は 4.2J/ (g・K) とする。 Gato 指針 (3) 水が得た熱量は, 電熱線で発生したジュール熱の70%に等しい。 解 (1) 電熱線に流れる電流をI [A] とすると,「P=VI」より、 400 W 400W =100 VXI よって, I= p.199式(7) =4.0A 100V p.192式(3) (2) 電熱線の抵抗値を R [Ω] とすると, オームの法則 「V=RI」 より (3)かかる時間を [s] とすると,「Q=Pt」 と 「Q=mcAT」 より, 100V よって, R= 100V=R×4.0A =25Ω 4.0 A p.125式(3) よって, t=3.78×10°s≒3.8×10's 84- p.199式(8) 400Wxtx0.70=300g×4.2J/(g・K)×(100-16) K 類題1 例題①の電熱線を、 元の80%の長さに切って, 100Vの電圧をかけた。次の 問いに有効数字2桁で答えよ。 (1) 電熱線の抵抗値は何Ωになるか。 (2) 電熱線には何Aの電流が流れるか。 (3)このときの電熱線の消費電力は何Wになるか。 (4) 例題1の(3)と同じようにして水をあたためたとき, かかる時間は元の何倍か。 20

解決済み 回答数: 1
物理 高校生

この問題の4番について質問です。振動数はおもりの重さによっては変わらないとあるのですが,なぜですか? おもりの数が多いほど,弦が張ることになるので,音が高くなると思ってました。(ギターみたいな感じで)

(3) Hz である。 また, a=35cm をそのままにし, おもりを4倍に増やし たとき, 弦は共振しなくなった。 弦を再び共振させるには,Bを 少なくとも (4) cm 右に移動しなければならない。 64 弦の共振 全体の長さが120cm 質量 1.8g の弦の右端に滑車を通して質量 6 kgのおもりをつるし,振動源Sによって弦を振動させる。 この弦は, コマBを動かすことにより任意の一点を固定できる。 弦の張力はどこ も同じで,振動する AB間の距離をα, 重力加速度を10m/s2とする。 問1 コマBを適当に動かすと, a= 30cmで弦が共振する。 さらにB を右に移動していくと, a=35cm で再び弦が共振する。 したがっ て,弦を伝わる横波の波長は (1) cmであり,このときのAB 間の腹の数は (2) 1個である。 またSの振動数は (1) 振動数 fと波の速さが変わっていないの で、波長も変わっていない。 Aが節で今こ とに節があるから, Aから30cmの範囲の定 常波の様子は同じこと。 そこで,Bを右へ だけ移せば再び共振する。よって .. 1 = 10 cm 5cm ごとに腹が1つずつあるから 35÷5=7個 B =35-30 2 2 2 (2) 2 (3)密度は p = 1.8×10-3 120×10-2 B< [kg] と [m〕 を - = 1.5×10-3 kg/m 用いること v = mg P 6 × 10 V1.5×10-3=200m/s 2 もとの弦と同じ材質 同じ長さで, 直径が2倍の弦に張り替え て, αを30cmにし, おもりの質量を6kgに戻す。 このとき弦は 共振し, AB間の腹の数は (5) 個となる。 また, AB間の腹の 数を3個とするには, Sの振動数を (6) 200 v=fa より - f === 10 × 10-2 = 2000Hz (4) はじめはVP Img =fx.......① Hz とすればよい。 mを4倍にしたときの波長を とすると,fは< ①を見て,m を4 倍にすると A B 変わっていないから V p 4mg =fv.......② 2倍になると即断 したい。 S 中にス ② より 2= =24=21=20cm ① 1 (上智大) ・B' Level (1)~(4)★ (5),(6)★ Point & Hint 隔は (1) (2) 弦が共振するのは, 両端が節となる定常波ができるとき。 節と節の間 2 だから、弦の長さが1の整数倍に等しいとき,共振が起こる。 弦の長さが4=10cmの整数倍のとき共振するから、35cmより大き い次の値としては 40cm。よって,5cm 動かせばよい。 A 2 (5)直径を2倍にすると, 断面積が4倍になる から、密度も4倍になる。 波長を入とす ①からを4倍にす ③れば入は1/2倍と即 mg=fie ......③ 断できる。 ると V 40 この問題のような状況では,Sはおもりの重力 mg に より1=4 ∴ A2 = =5cm 2 12= cm ごとにあるから 30÷2=12個 は v [m/s] はv= (3) 弦の張力をS〔N〕, 線密度をp 〔kg/m〕 とすると, 弦を伝わる横波の速さ 等しい。

解決済み 回答数: 1
物理 高校生

この質問に答えて。問題はコメントにある。

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

解決済み 回答数: 2