学年

教科

質問の種類

物理 高校生

物理のエッセンス 力学 74 運動方程式 解答では発射された質量mのガスを正と仮定していますが、私はロケットとは逆方向だと仮定し負にしました。 3枚目が私の考え方なのですが、合っていますでしょうか?

60 力学 以下,滑らかな水平面上での現象とする。 70 2kgの球Pと10kgの球Q が図のように衝突し た。 衝突後のQの速度を求めよ。 71* 静止している質量Mの木片に質量mの弾丸が速 さひで突き刺さった。 木片の速さを求めよ。 ま た、系から失われた力学的エネルギーEを求めよ。 72* 質量Mの粗い板が置かれている。 質量mの物体 が速さで飛んできて, 板上をすべり,やがて板 に対して止まった。 最後の全体の速さ”はいくらか。 運動工か? なんでだ... 73 静止していた物体が,質量mとMの2つに分裂し した。両者の速さの比v/Vと運動エネルギーの比をそ れぞれ, m, M で表せ。 m vo 6m/s 3m/s Po- mvo ■ 運動量保存則はベクトルの関係だから,直線上に限 らず,平面上で起こる衝突・分裂に対しても成り立つ (証 明は前ページちょっと一言と同じ)。 そのような場合には x,y 方向それぞれの成分について式を立てる。ときに は,運動量のベクトル図を描いて考えてもよい。 High 物体系に働く外力の和が0とな Miss 摩擦があると運動量保存則が使えないと思う人が多い。 でも物体と 板の間の摩擦は内力だ。 作用・反作用 3m/s M V A M 0? m トク 静止からの分裂速さは(運動エネルギーも) 質量の逆比 ムズム 74* 速さ Voで進む質量Mのロケットから質量mのガスを後方に噴射したとこ ろ, ロケットから見てガスはuの速さで遠ざかった。噴射後のロケット(質量 M-m) の速さ Vはいくらか。 相対速度の考え方 M V2 V2

解決済み 回答数: 1
物理 高校生

核融合反応について、(2)でHの原子量が1であるからHの原子核数はアボガドロ数6.0×10^23個であるという説明がわからないです。噛み砕いて説明してくださるとありがたいです。

図ここがポイント 1000J (1000J/s 1000W) のエネルギーを1時間使ったときのエネルギーのことである。 量は1であるから, アボガドロ数個のHの質量が1gである。 電力使用量 (kWh) とは、毎秒 核融合においても, 反応で失われた質量 4m によるエネルギーE=Amc² が解放される。 Hの原子 347 (1) この反応で失われる質量 4m 〔kg〕は =4.388×10-29kg ⊿m=(1.6726×10-27) ×4-{(6.6447×10-²7) + (9.1×10^31)×2} よって E=mc² = (4.38×10-29) × ( 3.0×10) 20 = 3.942×10-12 ≒3.9×10-12 J (2) H の原子量は1であるから, 1g の H の原子核数はアボガドロ数 るので 6.0×1023個 である。 H 原子核4個によって(1) のエネルギーが解放され N 4 W=EX- ×- = (3.94×10-12) X- =5.91×10"≒5.9×10" J (3)1kWh=1000W x 1h = 1000J/sx3600s=3.6×10° J 6.0×1023 4 であるから, 平均的な家庭が1年間に消費するエネルギーは 300 (kWh)x (3.6×10×12(か月分) = 1.296×10'J よって, 求める年数は (2) の答えを用いて 5.91 x 1011 1.29×1010 ≒46年 である。 1 有効数字は2桁であるが, 途中式や前の答えを引用する ときは1桁多くとる。

未解決 回答数: 0