学年

教科

質問の種類

物理 高校生

物理の質問です。 参考書のドップラー効果の公式の導出で分からない所があります。添付した画像が参考書の説明です。 c-v_s=f₀λ' (λ'=c-v_s/f₀) とありますがこれは波の進む速さの式と捉えることも出来ますよね。つまり、この式は振動数がf₀で、波長がλ'の波... 続きを読む

332 Chapter 13 ドップラー効果 13-2 音源が動くドップラー効果 13-2 音源が動くドップラー効果 静止した音源が音を発した1秒後 c(m) ココをおさえよう! 振動数」 ボクが最後尾 振動数∫の音源が,速さで近づくときに観測される振動数fは f=- 遠ざかる場合はf=cfusio ここでは,音源が動く場合のドップラー効果 (救急車の例) について考えます。 音源が発する音の振動数をfo [Hz] とします。 US このとき,音源は1秒間にf個の "波くん” を生み出しますね。 まずは音源が止まっている状態で,音を鳴らしている状況を考えましょう。 音速をc [m/s] とします。 音速というのは波の速さのことですから, 1秒間を切り取ると, 最初に発された“波くん"はc [m] 進み, 1秒後には音源からc〔m〕 までの間に fo個の“波くん”がいることになります。 速さ [m/s]で走る音源が音を発した1秒後 c-u (m) 振動数 速さい ボクが最後尾 先頭のボクは 目の速さは だからね 先頭のボクは スリムに なっちゃった 3 ということは、“波くん”1個分の幅は,入=〔m] と表すことができますね。 fo 今度は音源が速さで走りながら, 音を発しているとします。 1秒間を切り取ると, 最初に発された波くんはc 〔m〕 進みます。 同じ個の 1 “波くん”が ギュッと認められた んじゃ 静止の場合 c=foλ www fo 1秒後に。個目の”波くん” を発し終わるまでに,音源は距離 vs だけ動くので, c-vsの間に, fo個の“波くん”がいることになりますよね。 〔m〕に個の“波くん” fo 音源が走る場合 〔ml〕に個の“く” 補足 音の速さ [m/s] は音源の速さに関係ない。 →空気をベルトコンベアー、音を荷物と考えるとよい。 ダダダダ よいしょう このとき波くん1個分の幅, すなわち波長は入となって短くなります。 fo 止まって発した音と、走りながら発した音では、波長が変わってしまいました。 この波長の違いが音の高低の違いの原因になるのです。 続きはp.334で説明しま す。 ここで疑問に思っている人もいるかもしれないので補足です。 音源がで走りながら発されても、音の速さ とはならずにcのままです。 (先頭の“波くん"はc [m] しか進んでいませんね) これは、音が空気の振動なので 速さで 空気に伝わった瞬間に音源の影響を受けなくなるためです。 空気を速さのベルトコンベアー 音を荷物に例えるとわかりやすいですよ。 止まってベルトコンベアーに荷物を乗せても、走りながらベルトコンベアーに 荷物を乗せても荷物の進む速さは同じになりますね。 そんなイメージです。 走って乗せても、止まって乗せても 速さ c[m/s] ← 手をはなせば、物は同じ速さで進む

未解決 回答数: 1
物理 高校生

物理の質問です。 参考書のドップラー効果の公式の導出で分からない所があります。添付した画像が参考書の説明です。 c-v_s=f₀λ' (λ'=c-v_s/f₀) とありますがこれは波の進む速さの式と捉えることも出来ますよね。つまり、この式は振動数がf₀で、波長がλ'の波... 続きを読む

332 Chapter 13 ドップラー効果 13-2 音源が動くドップラー効果 13-2 音源が動くドップラー効果 静止した音源が音を発した1秒後 c(m) ココをおさえよう! 振動数」 ボクが最後尾 振動数∫の音源が,速さで近づくときに観測される振動数fは f=- 遠ざかる場合はf=cfusio ここでは,音源が動く場合のドップラー効果 (救急車の例) について考えます。 音源が発する音の振動数をfo [Hz] とします。 US このとき,音源は1秒間にf個の "波くん” を生み出しますね。 まずは音源が止まっている状態で,音を鳴らしている状況を考えましょう。 音速をc [m/s] とします。 音速というのは波の速さのことですから, 1秒間を切り取ると, 最初に発された“波くん"はc [m] 進み, 1秒後には音源からc〔m〕 までの間に fo個の“波くん”がいることになります。 速さ [m/s]で走る音源が音を発した1秒後 c-u (m) 振動数 速さい ボクが最後尾 先頭のボクは 目の速さは だからね 先頭のボクは スリムに なっちゃった 3 ということは、“波くん”1個分の幅は,入=〔m] と表すことができますね。 fo 今度は音源が速さで走りながら, 音を発しているとします。 1秒間を切り取ると, 最初に発された波くんはc 〔m〕 進みます。 同じ個の 1 “波くん”が ギュッと認められた んじゃ 静止の場合 c=foλ www fo 1秒後に。個目の”波くん” を発し終わるまでに,音源は距離 vs だけ動くので, c-vsの間に, fo個の“波くん”がいることになりますよね。 〔m〕に個の“波くん” fo 音源が走る場合 〔ml〕に個の“く” 補足 音の速さ [m/s] は音源の速さに関係ない。 →空気をベルトコンベアー、音を荷物と考えるとよい。 ダダダダ よいしょう このとき波くん1個分の幅, すなわち波長は入となって短くなります。 fo 止まって発した音と、走りながら発した音では、波長が変わってしまいました。 この波長の違いが音の高低の違いの原因になるのです。 続きはp.334で説明しま す。 ここで疑問に思っている人もいるかもしれないので補足です。 音源がで走りながら発されても、音の速さ とはならずにcのままです。 (先頭の“波くん"はc [m] しか進んでいませんね) これは、音が空気の振動なので 速さで 空気に伝わった瞬間に音源の影響を受けなくなるためです。 空気を速さのベルトコンベアー 音を荷物に例えるとわかりやすいですよ。 止まってベルトコンベアーに荷物を乗せても、走りながらベルトコンベアーに 荷物を乗せても荷物の進む速さは同じになりますね。 そんなイメージです。 走って乗せても、止まって乗せても 速さ c[m/s] ← 手をはなせば、物は同じ速さで進む

未解決 回答数: 0
物理 高校生

物理のエネルギー保存則の問題です。 この問題の(2)は等加速度直線運動の公式を使って解くことは出来ないのでしょうか?? 等加速度直線運動の公式は摩擦があると使えないということなのですか…?? 教えていただきたいです!!

34 力学 [11] エネルギー保存則 質量mの小球Pと3mの小物 体Q を糸で結び、Qを傾角30°の 斜面上の点Aに置き、糸を斜面 と平行にし、滑車にかけてPを つるす。 斜面は点Aの上側では 滑らかであるが、下側は粗く、 Qとの間の動摩擦係数は 1/3で P m Vo +1 Vo 3m → C 30° ある。Pに鉛直下向きの初速vo を与えたところ, Qもひで点Aから動 き出した。 重力加速度をgとし エネルギー保存則を用いて答えよ。 ((1) Q の達する最高点Bと点Aとの距離はいくらか。 (2) はやがて下へ滑り点Cで止まった。 AC間の距離Lはいくらか。 Level (1) ★ (2) Point & Hint Pの重力 mg よりもQの重力 の斜面方向の分力 3mg sin 30° の方が大きいので、静かに放せ →ばQ が下がりPが上がる状況。 運動方程式でも解けるが、エ ネルギー保存則で解かなければ ならないし、そのほうが早く解 ける。 !!! (1) 摩擦がないので力学的エネ Base 力学的エネルギー保存則 12m+位置エネルギー=一定 ※位置エネルギーには、重力の位置エ ネルギー mgh やばねの弾性エネ ルギー -hx2 などがある。 摩擦がないとき成り立つ。 厳密には 非保存力の仕事が0のとき成り立つ。 ルギー保存則が成り立つがPとQが糸を通して力を及ぼし合い、エネルギーの やり取りをしているので, PやQ単独では成立しない。 全体(物体系)について扱 うこと。運動エネルギーと位置エネルギーの総量が保存されるが、失われたエネ ルギー=現れたエネルギーとすると式を立てやすい。 (2) 元の位置に戻ったときの速さをまず押さえたい。 その後は摩擦があるので、摩 擦熱を取り入れ、エネルギー保存則を立てる。 摩擦熱=動摩擦力×滑った距離

未解決 回答数: 1
物理 高校生

物理の運動方程式の問題です。 この問題の(5)で、垂直抗力Nを求めるときに、写真3枚目の図から、N=Mg/2という風に、力のつり合いで解くとダメな理由を教えていただきたいです… 力のつり合いが成り立っていないからでしょうか?直線に垂直な方向ではつり合っているようですが、力の... 続きを読む

26 力学 8 運動方程式 物体A(質量 M) およびB(質量)を 糸の両端に結び, A を滑らかな斜面上にお き, Bを斜面の上端に取り付けた滑車を通 してつり下げる。 いま, Aを手で支え,そ の水平な上面に物体Cをのせてから,Aを 静かに放したら,AはCをのせたまま斜面 に沿って加速度(gは重力加速度)で滑 りおり始めた。Aが距離だけ進んだとき, C A B CをAの上から取り去ったところ,Aはその後一定の速度で滑りおり ていった。 (1) 斜面が水平面となす角はいくらか。 (2) 加速度運動をしているときの糸の張力はいくらか。 (3) 等速度運動をしているときのAの速さはいくらか。 (4) 物体 Cの質量はいくらか。 (5) 加速度運動をしているときCがAに及ぼす鉛直方向の力はいくら か。 (6)加速度運動中, CとAの間に滑りを起こさないためには, 両者間 の静止摩擦係数はいくら以上でなければならないか。 (兵庫県立大) Level (1)~(4)(5),(6) Point & Hint (1) C を取り去った後の運動に目をつける。等速度運動は力のつり合いのもと で起こる。 (2)Bに注目する。 (5) 力は2物体間で生じ, それぞれが受ける力の大きさは等しく, 向きは逆向きで あるという作用・反作用の法則を意識して,Cに注目する。 (6)AC 間に滑りはないから, AC間の摩擦は静止摩擦。

未解決 回答数: 1
物理 高校生

大問27と大問28が何回解説読んでも分かりません、、 特に分からない点は式の変形(大問27の(3))となんでこの公式を使うのかです!

27 鉛直投げ上げ 数 p.32~33 27 小球を初速度 24.5m/sで鉛直上向きに投げ上げた。 重力加速度の 大きさを9.80m/s2 とする。 (1) 鉛直下向きに 4.9m/s (2) 30.6m (1) 3.00 秒後の速度 (速さ [m/s] と向き) を求めよ。 (2) 小球が達する最高点の高さん [m] を求めよ。 (3) 1.00 秒後と 4.00 秒後 (3) 投げ上げてから高さ19.6mの所を通過するまでの時間t[s] を求 めよ。 v=24.5-9.80×3.00= -4.9m/s (1) 「v=vo-gt」より 鉛直下向きに4.9m/s (2) 最高点では小球の速度は0となるので, 最高点に達するまでの 時間は [v=vo-gt」 より よってt=2.50s 0=24.5-9.80t 「y=cot-- 11/1/20より 1 h=24.5×2.50- -×9.80×2.502≒30.6m 2 (3) 小球は 19.6mの点を上昇しながら通過し 最高点に達した後, 下降に転じ再び 19.6 mの点を通過する。 よって求める時間は 2つとなる。 30.6m 19.6m 「y=vot-122gt」より 1 19.6=24.5t- ×9.80×2 2 t2-5.00t+4.00=0 (t-1.00) (t-4.00)=0 鉛直投げ上げの式は鉛直上向き を正としているので、速度が負 の場合は、鉛直下向きに運動し ていることを表す。 (2)の別解)-v=-2gy」 より 02-24.52=-2×9.80xh よって ん≒30.6m よってt=1.00, 4.00 したがって 1.00 秒後と 4.00 秒後 28 鉛直投げ上げ 教 p.32~33 28 ビルの屋上の点Pから物体を鉛直上向きに速さ 4.9m/s で投げた。 重力加速度の大きさを 9.8m/s2 とする。 (1) 1.0秒 (2) 29m (1) 投げてから、 再び点Pにもどるまでの時間は何秒か。 (2) 投げてから3.0秒後に地面に達したとすると, 点Pの地面から の高さは何mか。 (1) 「y=oat-1/12gf」より、点Pにもどるまでの時間を f[s] とす 2 ((1)の別解) 再び点Pにもどっ てきたときの物体の速度は - 4.9m/s だから,「v=vo-gt」 より ると 0=4.9t- ×9.8×2 よってt=1.0s (2) 「y=vot-1/12gt2」より,点Pの地面からの高さを ん 〔m〕 とする 1 とん=4.9 × 3.0 - ×9.8×3.0²=-29.4≒-29m よってt=1.0s 2 よって h=29m 4.9=4.9-9.8t

回答募集中 回答数: 0
物理 高校生

(2)なぜ(−L2)なるのですか?

実戦 基礎問 58 顕微鏡の原理 レンズ1 レンズ2 像2の位置 物体の位置 像1の位置 L₁ La "fi" fi た f2 図は, 焦点距離がとの 2つの凸レンズを組み合わせた 顕微鏡の原理を示している。 物 体はレンズ1の焦点の外側に置 かれている。 したがって, 物体 と反対側に物体の像 (像1とする) ができる。 レンズ1から像1までの距離 とするとこのときレンズ1の倍率は,レンズの公式を使って, fu, L を用いて表せば (1) となる。 次に,像1がレンズ2の焦点の内側に位置す るようにレンズ2を配置する。 すると,拡大された像 (像2 とする) が見え る。 レンズ2から像2までの距離をLzとする。 fz, L2 を用いると,像2の 大きさは像1の (2) 倍となる。 最終的に物体の像は, (3)倍に拡大され、 その像は物体に対して倒立している。 もしチェ=5.0[mm], L=150[mm], 2=10[mm], L2=250 [mm] ならば、この顕微鏡の倍率はおよそ (4) 倍 になる。また,この顕微鏡の鏡筒の長さ(レンズ1とレンズ2の間の距離) は (5) ] [mm] である。 (中央大) ●組合せレンズ 顕微鏡や天体望遠鏡のように, 複数のレンズ 精講 を組み合わせることによって, 小さな物体や遠くの物体を拡大 して見ることができる。 (例) 2つのレンズを距離だけ離して置いた場合 【参考 図の よる 第2 し、 第 1- ( 第1レンズによる像を,第2レンズに対する物体として、レンズの公式 を用いればよい。 第2レンズ 第1レンズによる像の, 第1 レンズとの距離を61 とすると, 第2レンズに対する物体の,第 第1レンズ a as ·b₁₁ -ar 2レンズとの距離は a2= l-b, 物体 第1レンズの像 第2レンズ である。 ここで,第1レンズに 第2レンズの物体 の像 よる像が実像のときは61>0, 虚像のときは 6,<0 である。第2レンズに 第2レンズとの距離を62, 第2レンズの焦点距離

回答募集中 回答数: 0