学年

教科

質問の種類

物理 高校生

この問題で答えが2Eになる理由がわかりません。 教えて下さると助かります

? 71 ダイオードと交流回路 0-81- 出題パターン 最大電圧がE の交流電源 Ee, ダイオ ド D1,D2 および, 電気容量がともに NO Cのコンデンサー C1, C2 を使って,図 のような回路を組んだ。FIFのコンティ D1,D2は図の矢印の向きには電流を 流すが、その逆向きには電流を流さない。 よってD1,D2はスイッチの役目を果た す。 S, 閉じ に、抵R」を流 このとき、十分時間が経った後にC点の世 にかかる電圧はある一定値に収束する。 その値を求めよ。 -)8[ +0 4 C ₂ D1 FORT 0+0+0. 01-08 HOTHER 10 078748++AS÷ © (A) S= .010 解答のポイント! ) 「ダイオード」,「交流」と聞くと,①理想的ダイオードが大切。 「どこから手をつけて良いかわから法51 「ない」という声を聞く。 しかし, 本 問においては次のような「置き換 ( え」 をすることによって, 超シンプ ルなコンデンサー回路に帰着できる のだ。そのポイントとは,理想的ダ イオードと交流電源を含む問題では 図 20-14 のように、 場合分けをして 考えていくことなのだ。 _0+NO+ND= BRBO 11-OS Hogl LO ②交流電源 る。また!!見 A (v) a=e+sg=N=[8²/N} 電流 10-> (108 TRY N 「導線」| 51-08 「断線」して 流れない × また, コンデンサーの無限回スイ ッチ操作での最終状態の求め方のコ ツは,「もうそれ以上変化がない」と 状態をつくることである。 が切れている社設全品 ので、む 青師 0=818+ 交流 ⇒ N 電源 電位差 0 下向き+極 VA NHAU TOLY ・上向き+極 GI 解法 ESTLA 199120-14=1010 まず, 電源 Ee がア下向きの起電力を持っているときには、次ページの図 20-15 のように D は 「導線」, D 2 は 「断線」となる。 sho 逆に,電源 Ee が上向きの起電力を持っているときには 図20-16のように

未解決 回答数: 1
物理 高校生

⑴の解説の赤線を引いているところなのですが、マイナスになるのはなぜですか? 教えてください🙏

発展例題 5 斜 図のように、傾斜角0の斜面上の点Oから、斜面と垂直な 向きに小球を初速。 で投げ出したところ, 小球は斜面上の 点Pに落下した。 重力加速度の大きさをgとして,次の各問 に答えよ。 ■ 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 解説 (1) 小球を投げ出してから, 斜面から最もはなれるまでの時間を求めよ。 部 (2) OP間の距離を求めよ。高 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる (図)。 重力 加速度x成分,y成 分は,それぞれ次のよ うに表される。 0 y -gcoso x gsine g Vo gcoso P x 成分 : gsino 成分: -gcose 方向の運動に着目する。 小球が斜面から最も はなれるとき, 方向の速度成分vy が 0 となる。 求める時間を vy=v-gcose.t」 とすると, の式から, 平水 0=vo-gcoso・t t₁ = (2) Py=0 の点であり, 落下するまでの時間 Puti をたとして, 「y=uot-1/21gcose.12」の式から, 1 0=vot2gcost₂² ACT DE Chat 0=t(v-gcose-t₂) 01 2 JEST t0から、 ら t₂ = 200 g cose TRY OP間の距離は、 1 x= gsinO・t22= Vo RECO(S) ( 1 x 方向の運動に着目すると,x=- = 2v2" tan0 I TREg cose 0 =1/29sino. 9 sine t 200 gcose PENSE Point 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y = 0 からy方向 の最高点に達するまでの時間と, 最高点から再 びy=0 に達するまでの時間は等しく, t=2t として tを求めることもできる。

解決済み 回答数: 1
物理 高校生

(3)のイの解説の波線部分が分かりません。 どこからlだけ長くなっているとわかるのか、どうやってこの式を出したのか教えて頂けると助かります。 

出題パターン 摩擦力を介した2物体の運動 図のように、 水平な床の上に質量Mの板Bがあり,その上に質量mの 物体Aが置かれている。 板Bと床との間には摩擦がないが, 板Bと物体A との間には摩擦がある。 静止摩擦係数をμlo, 動摩擦係数をμとし、重力加 速度の大きさを」 とする。 (i) 速さ A <DBのとき B J30 うまるち駅の条3 MAKSĀ BAGITARS ANUS Ara GENER A AN (1) 板 B に加える力FがFcより小さいとき, 物体 A と板Bは一緒に動く。 (ア)物体A の加速度はいくらか。 TOTESTI 垂直抗力N ml (イ)このとき,物体Aが板 B から受ける力のx成分はいくらか。 (2) 板Bに加える力Fを大きくしていって, 物体Aが板Bの上をすべり 出そうとするとき, 物体Aが板 B から受ける x 方向の力はいくらか。 ま た板Bに加える力F (この力がF)はいくらか。 (3) 板 B に加える力F が Fc より大きいとき,床に対する物体 A, 板 B の 加速度をそれぞれα βとする。 KO (ア)物体A板Bの運動方程式は, それぞれどうなるか。 (イ)物体Aが板Bの上を距離だけ動いて, 板Bの端に到達するまでに 要する時間はいくらか。 右へ行くな N M →DA 解答のポイント! ats “よく出る”「こすれあう2物体間に働く摩擦力Rの向き」について 図3-3 ように考えてみると, 1KO ISTR 13151S (i) BがAよりも右へいってしまうのを防ぐ向き ( ) AがBよりも右へいってしまうのを防ぐ向き になっている。つまり、摩擦力の向きはいつでも「ずれを防ぐ向き」としてシン HHOU. プルに判定することができる。 ち入り回す DB B 大 右へ行くな B 図3-3 (ii) 速さのとき A AN 6 NV R VA UB

回答募集中 回答数: 0
物理 高校生

物理の電磁気に関する問題です 出典:大阪大学(理系)2019 2枚目の写真にある問4について、解説では極板Dを移動しても電気量は変わらないため電荷の保存則を用いていますが、 ①「電気量が変わらないのはスイッチ1を切ったから」と言う解釈で良いのでしょうか? ②解説にある等... 続きを読む

22 2019年度 物理 〔2〕 以下のような,二種類の回路で起こる現象について考えよう。 お I.図1に示すように, 3枚の平行極板 A, B, D が置かれている。極板Aと極 板Bの位置は固定されており,極板Dは摩擦なく, 平行を保ったまま極板に NATURE 垂直な方向に動く。極板D は, スイッチ S を介して電圧 V の直流電源,ス イッチ S2 を介して自己インダクタンス L のコイルとつながっている。 3100 最初に極板 D は極板 A-Bの中間に置かれており,極板D-Aと極板D-Bの 間隔はともにdで極板間は真空になっている。このとき極板 D-A,極板 D-B からなるコンデンサーの静電容量は両方ともにCであった。スイッチ SL とスイッチ S2 はともに開いていて,どの極板にも電荷は蓄積していないもの とする。極板 D の変位をx(x <d), 最初の位置をx=0とし、極板Bか ら極板Aへの向きをxの正の向きとする。極板の面積Sは十分広く, 極板 きとする。他の面積は十万 16 の厚みはd に比べて十分薄いものとする。 極板の端の影響は無視できる。ま た導線及びコイルの抵抗は十分小さく, 無視できるとする。 61923 idid: *** Č6 +6 Aとせよ。 33817343 AJAN B D L X 4 #5820 ASHXU 05-0400 (3₂/Stot 図 1 FV (1) 02 (>) m ようこ出店 narosa # (3)

回答募集中 回答数: 0
物理 高校生

(4)です。 なんで1,8×10³になるんですか? 18×10²ではだめでしょうか…

■速さ(m/s) よ。 ....... 傾きは ⑩ 0 1 2 3 4 5 6 r[s] 40 0 m 0m/s² 3 (m/s) 8 2 4t で求められる。 2014-h 4 Ap=3.0m/s 0m/s ってみよう! 問題 18~20 6t [s] At-2.0s-Os (日) x₁= x6.0×6.0=18m 11/12/ (3) x は図の 「S,の面積S」の面積」 に等しいので =18-1/2×2.0×2.0=16m x=18- v[m/s) 20 等加速度直線運動のグラフ p.23~25 まっすぐな線路上を走る電車がA駅 を出てからB駅に到着するまでの, 速さ [m/s] と時間 f[s] の関係を図に 示す。 電車の進む向きを正の向きとす る。 (1) t=0s から t=30sまでの間の電車 の加速度 α [m/s²] を求めよ。 (2) t=30s からt=90sまで等速直線運動をしている間の電車の速 さ] [m/s] を求めよ。 20 16 12 8 4F 23 自由落下 p.30~31 宮10 130 0 (3) t=90s から t=140sまでの間の電車の加速度 α' [m/s²] を求めよ。 (4) A駅とB駅の間の距離 1 [m] を求めよ。 the the best the sta tud 90 140 t(s) (1) b-t 図より α= =0.60m/s² 18 30 (2) b-t 図より読み取ると, 30 ~ 90sの区間の速さは一定で 18m/s (3) pt 図より α'= 0-18 140-90 -=-0.36 m/s² (4) u-t 図のグラフと軸が囲む面積は移動距離を表すので =1/1×{(90-30)+140}×18=1.8×10°m la diritto tot x = 6.0×6.0 20 (1) (2) (3) (4) 23 +1/1/2×(-1.0) =18m 0.60m/s² 18m/s (-1.0) × (6.0)* -0.36 m/s² 1.8×10m ((2)の別解) 等加速度直線運動 の式 「v=vo+al」 を用いて t=30sの速度を求める。 v=0+0.60×30=18m/s 第1章 運動の表し方 17

未解決 回答数: 1