学年

教科

質問の種類

物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

>>1 圧縮 比例 1 V グラフ ら、熱 出題パターン 38 定モル比熱と定圧モル比熱 「ピストンつきの容器内に, n モルの理想気体が, 体積V1, 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱を Cvとする。 「ピストンを自由に動けるようにして、熱を与えて温度をT2にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout. 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から,気体の定積モル比熱 Cr と 定圧モル比熱 C, の間にはどのような関係があるか。 解答のポイント! 定圧変化であっても4U = Con⊿T の形となることに注意。 解法 熱力学の解法3ステップで解く。 AJR STEP1 変化の前後でのか,Vn,Tを 図示する。 ここでピストンは自由に動けるので, ピストン内の気体の圧力は大気圧とつりあって いて,いつもpとなる。 このように、大気圧、 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 4 大気圧 nTi ンでは、必ず定圧変化になるのだ。 また、後の圧力 体積を V2 (未知数) とおくと, DV2 n T2 大気 1圧 図 11-4 前 (3 p Nout 前:pV=nRT ... 1 負 後:pV2=nRT ... ② -Wout E縮 STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout V₁ V2 体積V 1). になる。 図 11-5 いる にあ STEP3 熱力学第1法則を表 (表中雪)にまとめると, Qin n(Cy+R) (T2-T, + 4U Wout Cyn (T-T) |p (V2-V)=nR(T2-T) (1②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmでn=1 [mol], T2-T=1 [K] としたものに等しく. C=1x (Cy+R)×1=Cv+R この式は理想気体であれば必ず成立するので、この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1
物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

出題パターン 38 定積モル比熱と定圧モル比熱 ピストンつきの容器内に、 モルの理想気体が, 体積 V1. 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱をCとする ピストンを自由に動けるようにして、熱を与えて温度を T2 にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から, 気体の定積モル比熱 Cr と 定圧モル比熱Cの間にはどのような関係があるか。 解答のポイント! 定圧変化であっても 4UCn4T の形となることに注意。 解法 熱力学の解法3ステップで解く。 STEP1 変化の前後でのか,V,n,Tを 図示する。 ここでピストンは自由に動けるので、 ピストン内の気体の圧力は大気圧とつりあって いて、いつもp となる。 このように、大気圧, 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 大気圧 nTi D V2 大気 nT2 図 11-4 ンでは、必ず定圧変化になるのだ。 また後の圧力は最 体積を V2 (未知数) とおくと, 前:pV=RT ... ① 前 圧 Wout 後:pV2=nRT2 ... ② STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout になる。 0 V₁ V2 体積V 図11-5 STEP3 熱力学第1法則を表 (表中) にまとめると, Qin 4U + Wout n(Cy+R) (T2-T) Crn (T2-T)p (V2-V)=nR(T2-T) (1 ②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmmでn=1 [mol], T2-T, = 1 [K] としたものに等しく =1x (C+R)×1= [Cy+R この式は理想気体であれば必ず成立するので、 この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1
物理 高校生

速度の合成の(4)で、CDを求める所からイマイチ理解出来ないので、誰か噛み砕いて教えて欲しいです

1. 速度の合成 図のように、一定の速さで一様に流れる川に浮かぶ船の運動を考える。 船は、静止している水においては一定の速さ vs (vsv) で進み, また、瞬時に 向きを自由に変えられる。 最初, 船は船着場Aにいる。 Aから流れに平行に 下流に向かって距離L離れた地点をB, A から流れに垂直に距離W 離れた地 点をC, Cから流れに平行に下流に離れた地点をDとする。 船の大きさは無 視できるものとする。 C D 川 WW ひろ 三 A M B L (1)地点AとBを直線的に往復する時間 TB を L, vs, v を用いて表せ。 →正 (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向け, 流れに垂直に 船が進むようにして,地点AとC を直線的に往復する時間 Tc を W, vs, v を用いて表せ。 (3)L=Wのとき, Tc を TB, vs, v を用いて表せ。 また, 時間 Tc と TBのうち長いほうを答えよ。 (4)船首の向きを, AC を結ぶ直線に対し角度8 (80)だけ上流向きに向けて地点Aから船を進めると 地点Dに直線的に到着する。 その後、地点DからCに、流れに平行に進み, 地点Cに到着する。 地 点AからDを経由し Cまで移動するのに要する時間を W, vs, v, 0を用いて表せ。 分解する [21 東京都立大] (4) Ms. M UsW RUSCOSE MS COS Mssing M Ľ 流されてしまう W=uscostAp AからDの時間 W Ł. CAD=COSO CD = (u-ussingtap mussingi Mscost CD=us-utpe と流されたしかり toc= MSCD の時間 M5-1 u-ussing TtAp+toc こ (1-sin) W (Ms-m) Coso W

回答募集中 回答数: 0