学年

教科

質問の種類

物理 高校生

問の6の答えが答え見ても分かりません、

... 【物理 必答問題】 2 次の文章(III)を読み,下の各問いに答えよ。(配点 35) I 図1のように,あらい水平面と, 水平となす角度が 30°の斜面がつながっている。 斜面 は,水平面からの高さがんの点Bより上側はなめらかで, 点Bより下側はあらい。水平 面からの高さが3hの斜面上の点Aに質量mの小物体を置いて静かにはなしたところ, 小物体は斜面をすべりはじめた。 重力加速度の大きさをgとし, 小物体は同一鉛直面内で 運動するものとする。 小物体 A >m 斜面 3h B h 30° 図 1 水平面 問1 小物体が点Aから点Bまですべり下りる間に, 小物体にはたらく重力がした仕事, 斜面から小物体にはたらく垂直抗力がした仕事はそれぞれいくらか。 問2点Bを通過するときの小物体の速さはいくらか。 小物体は点Bを通過した直後から一定の速さで運動し、斜面の最下点 (斜面と水平面が つながる点) Cに達した。 問3点Cに達したときの小物体の運動エネルギーはいくらか。 問4 点Bから点Cまですべり下りる間の運動について, 小物体の運動エネルギーの変 化は0なので,この間に小物体がされた仕事の和は0である。これより, この間に小 物体にはたらく動摩擦力がした仕事を求めよ。 - 49 -

回答募集中 回答数: 0
物理 高校生

問2の(イ)解答にある「4/3波長分」の意味がわかりません。

73. 気柱の共鳴 5分 気柱の共鳴と音の速さについて考える。 問1 次の文章中の空欄アに入れる式として正しいものを 下の①~⑥のうちから1つ選べ。 気柱の長さ スピーカー ピストン 実験室内に,図のような一端がピストンで閉じられ、気柱の長 さが自由に変えられる管がある。 管の開口部でスピーカーから振 動数fの音を出し,ピストンを開口端から徐々に動かして,最初に共鳴が起こるときの長さを測定す であった。 さらにピストンを動かし,次に共鳴する長さを測定したところL』であった。これ より音の速さはアと求められる。 ただし, 開口端補正は無視できるものとする。 ① fL2 ② 2fL2 ③f(L2-L ④ 2f (L-Li) ⑤f(L₂-L) ⑥f(L₂-L₁) L₁ L2 Li L2 問2 次の文章中の空欄イウに入れる語句として最も適当なものを, それぞれの直後の { }で囲んだ選択肢のうちから1つずつ選べ。 (02.0- OS) Snia O.E 気柱の長さをL に保ったまま, 共鳴が起こらなくなるまで実験室の気温を徐々に下げた。 共鳴が 起こらなくなったのは, 管内の空気の温度が下がったため, 0 0 03.0mol ① 音の波長が長くなった 401 管内のイ ② 音の波長が短くなった 0 ③音の振動数が大きくなった からである。 ① ④ 音の振動数が小さくなった ⑤ 音が縦波から横波になった このあと, ピストンの位置を左に動かしていったところ、 管の開口端に達するまでに ① 1回 E ②2回 共鳴はウ 起こった。 ③ 3 回 ④ 0 回 10. [2021 追試〕

回答募集中 回答数: 0
物理 高校生

(1)について質問です B室のところで圧力をp1として計算しているのはなぜですか?

状態 1 A 室 IS B室 To To L L 265 断熱変化■ 図のように,両端を閉じた長さ2L, 断面積Sのシリンダー内部に, なめらかに動く厚さの無視 できる壁を取りつけ, A室およびB室に区切る。このシリ ンダーおよび壁は断熱材でつくられており, A室内の気体 はヒーターにより加熱できるものとする。 A室およびB室 状態 2 のそれぞれに, 温度 To の単原子分子理想気体1mol を封 入すると,気体の圧力はともに po となり, 壁はシリンダー の中央に静止した (状態1)。 次にA室内の気体を加熱した A 室 B 室 T1 T2 d ところ, A 室内の気体の圧力が上昇し、壁がシリンダーの中央よりd (<L)だけ右 に移動し静止した(状態2)。 A室内の気体が吸収した熱量Qと壁の移動量dの関係を求 めたい。 気体定数をRとする。 (1) 状態2におけるA室内の気体の温度 T, およびB室内の気体の温度T2を, To, L, d, Do, p を用いて表せ。 P1 5 =/1/3とし (2) を, L, d を用いて表せ。なお, 単原子分子理想気体の断熱変化では,y=1/3 po てV'=一定の関係が成りたつことが知られている。 (3)状態1から状態2への変化で,A室内の気体の内部エネルギーの変化 4UA, および B室内の気体の内部エネルギーの変化 4UB を, To, R, L, d を用いて表せ。 (4) A室内の気体がB室内の気体に対してした仕事を Wとする。 4U および 4UB を, QWのうち必要なものを用いて表せ。 (5) Q を, To, R, L, d を用いて表せ。 [22 岡山大 改] 254

回答募集中 回答数: 0
物理 高校生

物理のエネルギー保存則の問題です。 この問題の(2)は等加速度直線運動の公式を使って解くことは出来ないのでしょうか?? 等加速度直線運動の公式は摩擦があると使えないということなのですか…?? 教えていただきたいです!!

34 力学 [11] エネルギー保存則 質量mの小球Pと3mの小物 体Q を糸で結び、Qを傾角30°の 斜面上の点Aに置き、糸を斜面 と平行にし、滑車にかけてPを つるす。 斜面は点Aの上側では 滑らかであるが、下側は粗く、 Qとの間の動摩擦係数は 1/3で P m Vo +1 Vo 3m → C 30° ある。Pに鉛直下向きの初速vo を与えたところ, Qもひで点Aから動 き出した。 重力加速度をgとし エネルギー保存則を用いて答えよ。 ((1) Q の達する最高点Bと点Aとの距離はいくらか。 (2) はやがて下へ滑り点Cで止まった。 AC間の距離Lはいくらか。 Level (1) ★ (2) Point & Hint Pの重力 mg よりもQの重力 の斜面方向の分力 3mg sin 30° の方が大きいので、静かに放せ →ばQ が下がりPが上がる状況。 運動方程式でも解けるが、エ ネルギー保存則で解かなければ ならないし、そのほうが早く解 ける。 !!! (1) 摩擦がないので力学的エネ Base 力学的エネルギー保存則 12m+位置エネルギー=一定 ※位置エネルギーには、重力の位置エ ネルギー mgh やばねの弾性エネ ルギー -hx2 などがある。 摩擦がないとき成り立つ。 厳密には 非保存力の仕事が0のとき成り立つ。 ルギー保存則が成り立つがPとQが糸を通して力を及ぼし合い、エネルギーの やり取りをしているので, PやQ単独では成立しない。 全体(物体系)について扱 うこと。運動エネルギーと位置エネルギーの総量が保存されるが、失われたエネ ルギー=現れたエネルギーとすると式を立てやすい。 (2) 元の位置に戻ったときの速さをまず押さえたい。 その後は摩擦があるので、摩 擦熱を取り入れ、エネルギー保存則を立てる。 摩擦熱=動摩擦力×滑った距離

未解決 回答数: 1