学年

教科

質問の種類

物理 高校生

高校物理です。 類題の解き方を誰か教えてください。

10 例題② 導体棒の運動 (発電機の原理) 鉛直上向きで磁束密度B[T] の一様 磁界中に, 間隔 [m] で水平に置か れた直線状の平行な2本の導線と、 抵抗値 R[Ω]の抵抗をつなぎ,軽い導 体棒ab を置く。 導体棒には軽くて伸 a B M 支える。静かに手をはなすと, おもりは下降し始め、しばらくして おもりと びない糸を張り, 滑車を通して他端に質量M[kg]のおもりをつり下げ、手で 導体棒は一定の速さになった。 重力加速度の大きさをg[m/s] として、次の問 問いに答えよ。 ただし, 導体棒の質量や抵抗, 導体棒と導線との間の摩擦力,回 路を流れる電流がつくる磁界は無視できるものとする。 (1)回路を流れる電流の強さ I[A]を B, l,M,g を用いて表せ。 一定の速さ” [m/s] を B, l, R, M, g を用いて表せ。 (3)重方の仕事率 P〔W〕を B, l, R, M, g を用いて表せ。 指針 (1) 等速度運動をしているおもりと導体棒にはたらく力はつり合っている。 (2)に生じる起電力を”を用いて表し, キルヒホッフの法則を用いる。 #4 (1) 導体棒には,糸の張力 T[N] と電流が磁界から受ける力 IBI [N], おも りには糸の張力T [N] と重力 Mg 〔N〕 がはたらいている。おもりと導体棒は等速度 運動をしているので,それぞれにはたらく力はつり合っている。よって, T-Mg=0 ・① T-IBl=0 ......2 式①,②より,IBl=Mg よって, I= ・[A] Mg Bl (2)導体棒 ab には,a から bに向かう向きの誘導起電力 V=uBl[V] が発生する。 キルヒホッフの第2法則より、 p.302式(3) p.261式 (12) vBl=RI よって,v= RI RMg [m/s] Bl B²12 (3)力の仕事率 P〔W〕 は, 力と速さの積で表される。 すなわち, M'g'R P=MgXv= (W) B²12 類題2 図のように、例題② の装置に, 内 部抵抗の無視できる起電力E [V] の電池とス イッチSを付け加えて, おもりを手で支えて おく。 スイッチSを閉じて静かに手をはなす と、おもりは上昇し始め、 しばらくするとお もりと導体棒は一定の速さになった。 R ET (1)回路を流れる電流の強さ [A] を B, l,M,g を用いて表せ。 (2)一定の速さ [m/s] を B, l, E, R, M, g を用いて表せ。 B a M

回答募集中 回答数: 0
物理 高校生

(1)がわかりません 解説ではグラフの値をV=E-rIに代入して連立方程式でrを求めているのですが 電流計で測られた値は、分岐した電流じゃないんでしょうか。どうして代入できるのかわかりません 質問の意図が読み取れなかったらごめんなさい

旧ル電のは J TV で 26 Q る電 78 18 (a)) (2) AB間に抵抗xを接続するとき (a) CD 間の電圧Vを求めよ。 (b) 抵抗x と (接地) R と並列に電気容量Cのコンデンサーを接続したとき, コンデンサーの電位 の低いほうの極板に帯電する電気量Qを求めよ。」 例題80 414 電池の起電力と内部抵抗の測定■ 内部抵抗r[Ω],起電力 E[V] の電池があ る。これを用いて図1の回路を構成し, 可変抵抗Rの値を変えながら電流と電圧を測定 したところ、 図2を得た。 電流計の内部抵抗と, 電圧計に流れる電流はないものとする。 (1) 起電力 E[V] を求めよ。 [2] 内部抵抗 [Ω] を求めよ。 (3)R=r の状態は,図2のA, B, C, D,E,Fのうちどこか。 (4) この電池の正・負極を電線でつなぐ (ショートする) ときに電池を流れる 電流I [A] を求めよ。 図 1 電圧(V) 2 A B. 0 1 2 3 電流(A) 図2 (5) 状態Aにおいて,Rの値 R [Ω] およびRで消費される電力PA [W] を求めよ。 (6) 状態 Aにおいて, 内部抵抗による電圧降下 V, [V], rで消費される電力 P, [W] を 求めよ。 例題80 V2 [[/s]

未解決 回答数: 1
物理 高校生

2個目のAで急に点Aがでてきた理由がわからないので教えてください

V 干渉 135 & 図を見ると山と山が重なっていない点にも強め合いの線が描かれていますね。 強め合いの位置というのはいつも山と山が重なってじっとしているわけでは ないんだよ。時間を追ってみると谷と谷が重なることもあり、 振幅2Aでバタ バタ激しく動いている点なんだ。 右の図で細い線は少し時間がたったときの 波面。 山の重なりはP′へ移っているね。 そ のうちPには谷と谷がさしかかることにな コしてるわけだ。 る。強め合いの線に沿って見ていくとデコボ 強め合いの線 P 山 S2を中心と して広がる 一方、弱め合いの線上での変位はどこも 0 で水面はじっとしているんだよ。 Sを中心と して広がる 波紋が広がるイメージ をもって見てみよう Q 条件式の方は考えれば考えるほど分からな くなります。 確かに=5,2=3のような位置では,波源と同じ変位だか ら,波源が山のとき, 山と山が重なり合います。 でも,=53入,2=3.3 (や はり差は21で強め合い)となると,いったいどう説明できるんですか? まず, 波源 S1, S2が山を出したときを考えよう。 この2つの山がやがて点Pで出合うわけではない ね。Pに近いS2 から出た山の方が先にPに着いて しまうからね。 S2 から出た山が出合う相手, それは SとPを結ぶ線上でPA=PS2となる点 A にいる 波だ。 つまり点 A に山がいることが強め合う条件だ。 SとAが同時に山となるためには SA=m入 ほら、 SAこそ じゃないか。 一方, 弱め合いは波源が山のときAに谷がいれば よい。 S2 の山とAの谷がやがてPで出合って打ち 消すことになる。 S, が山, A が谷となるためには 入 山 S1 強め合い P S2 これらがPで重なる 弱め合い P 山 S.A が 1/12 あるいは 123+m入であればいいね。 S1 S₂ Q なるほど。すると, 波源が逆位相のときは,Sが山を出したとき S2は谷を 出すと………そうか! 距離差=miならAは山でS2 からの谷と打ち消し合 うし,距離差= (m+1/2)入ならAは谷で強め合うというわけですね。

回答募集中 回答数: 0