学年

教科

質問の種類

物理 高校生

(1)の答えが何故sinでなくcosなのかが分かりません 教えてください🙇‍♀️

問題 25. 交流回路 (108) 交流の発生 CHOM 図のように, 磁束密度の大きさ B〔T〕 の一様な磁場中に,一辺の長さ (21〔m〕 の正方形コイル abcdを置いた。 このコイルは,辺bcの中点を通り辺 ab に平行な軸のまわりに回転するこ とができ,この回転軸が磁場と垂直に B b C N 物理 R f S なるように設置されている。 時刻 t = 0〔s) において,辺bcは磁場と平行で あり,cからbへの向きが磁場の向きと一致していた。 このコイルに抵抗値 R[Ω] の抵抗を接続し、 コイルを図に示した向きに一定の角速度 [rad/s〕 で 回転させた。 ただし, コイルの誘導起電力および抵抗を流れる電流は, a→b→c→d→efaの向きを正とする。 (I) 時刻において,辺ab に生じる誘導起電力はいくらか。 (2) 時刻において, コイル abcd全体に生じる誘導起電力はいくらか。 (3)時刻において, 抵抗を流れる電流はいくらか。 (4) 抵抗を流れる電流の実効値はいくらか。 (5)抵抗で消費される電力の平均値はいくらか。 <福岡大〉 解説 (1)0 <wt<〔rad〕のときに 2 ついて,コイルをad側から見て考えよう (右 図)。 辺ab は, 半径[m〕, 角速度w [rad/s〕 で回転しているので,速さはww [m/s] である。 時刻 [s] では, コイルが磁場方向からwt[rad〕 磁場に垂直な成分 lw wt wt lwcoswt a(b) N S d(c) a (b) |d(c) Iw 金 (3) だけ傾いているので,辺abの速度の磁場に垂直な成分はlwcoswt[m/s]で ある。 辺ab に生じる誘導起電力Vab 〔V〕 は, a→bの向きに生じ, 正なので, Vab=Wwcoswt・B・21=21wBcoswt[V〕 (2)(I)と同様に考えて,辺cdに生じる誘導起電力 Va〔V〕は, c→dの向きに生 じ,正なので, Ved=212wBcoswt[V] また,辺bcと辺adには誘導起電力は生じない。 したがって, コイル abcd

解決済み 回答数: 1
物理 高校生

⑵の解説をお願いします。🙇 何故1:2√3が出てきたのかよくわかりません。 お手数ですが、よろしくお願いします

基本例題 2 速度の合成 4,5,6 解説動画 流れの速さが2.0m/sのまっすぐな川がある。 この川を,静水上を4.0m/sの速さで進む船で 移動する。 2.0m/s (1) 同じ岸の上流と下流にある, 72m離れた点A と点Bをこの船が往復するとき,上りと下り に要する時間 〔S〕, t2 〔s] をそれぞれ求めよ。 72m B A 2.0m/s 60m (2) この船で川を直角に横切りたい。 へさきを向けるべき図の角0 の値を求めよ。 (3)(2), 川幅60m を横切るのに要する時間 t [s] を求めよ。 指針 (2) 船 (静水上) の速度と川の流れの速度の合成速度の向きが, 川の流れと垂直になればよい。 解答 (1) 上りのときの岸に対する船の速度は BAの向きに 4.0+(-2.0)=2.0 72 注 川を横切る船は, へさきの向きとは 異なる向きに進む。 Q R 60° m/s だから ム=- =36 s 2.0 下りのときの岸に対する船の速度は ABの向きに 4.0+2.0=6.0m/s 72 (3) 合成速度の大きさを v [m/s] とすると, 4.0m/s v 60% 直角三角形の辺の比より P2.0m/s だから = =12s v=2.0x√3m/s 6.0 (2) 船が川の流れに対して直角に進むの で, 右図のように, 船 (静水上) の速 度と川の流れの速度の合成速度が, 川の流れと垂直になる。 ここで, △PQR は辺の比が1:23 の直 角三角形である。 よって0=60° ここで,3=1.73 として t=10×1.73=17.3≒17s 注 √3=1.732・・・ や √2 =1414… など の値は覚えておこう。 この速さで60mの距離を進むので t=- 60 2.0x3 60×3 2.0×3 =10√3s

解決済み 回答数: 1
物理 高校生

(2)の後半の「遠心力が重力より勝っていればたるまない」から、(遠心力)≧mgという式だと考えたのですが、解答では(張力)≧0となっていてそれが何故か分かりません。θ=180°において張力がある場合下向きに力が働くと思い、だとするとたるんでしまうと考えています。解説お願いします!

チェック問題 2 振り子の円運動 糸の長さ おもりの質量mの振り 子がある。 おもりに最下点で初速度 v を与えた。 標準 6分 (1) 振れの角が0のときの糸の張力T を求めよ。 (2) 糸がたるまずに1周するには vo はいくら以上必要か。 解説 (1) 《円運動の解法》 (p.191) で解く。 STEP 1 中心は点O 2 半径1, 3速さ” M m 45 は未知。 さぁ、どうやって求める? 速さときたらエネルギー。 いまは, 摩擦熱は出てな いから《力学的エネルギー 保存則》 (p.162) ですよ。 ☐ キミの言うとおりだ。 式を立てると, Vo mg 2 = mvo -m² + mg/l(1-cos 0 ) 遠心力 図 a よって、v=√vo2-2gl(1-cose) STEP 「回る人」から見て,遠心力 m を作図 STEP 3 重力を半径, 接線方向に分解しよう。 ここで糸は伸び縮みしない ね。このことから,半径方向には確実に力のつり合いが成り立つので, v² T T = mg cos0 + v² ② mT ②に①を代入すると, Vo 2 - T=m + g(3 cosa - 2)} ...... CS CamScanner でスキャン 第15章円運動 | 193

解決済み 回答数: 2