学年

教科

質問の種類

物理 高校生

(2)はこのようなやり方でも合ってるんでしょうか??教えてください

例題 解説動画 基本例題29 円錐振り子 図のように、長さLの糸の一端を固定し, 他端に質量m のおもりをつけて, 水平面内で等速円運動をさせた。糸と 鉛直方向とのなす角を0, 重力加速度の大きさをg として, 次の各問に答えよ。 出した。 X(1) おもりが受ける糸の張力の大きさはいくらか。 (2)円運動の角速度と周期は,それぞれいくらか。 指針 地上で静止した観測者には, おもり は重力と糸の張力を受け, これらの合力を向心力 として,水平面内で等速円運動をするように見え る。この場合の向心力は糸の張力の水平成分であ る。 (1)では,鉛直方向の力のつりあいの式, (2) では,円の中心方向 (半径方向) の運動方程式を立 てる。なお,円運動の半径はLsin0 である。 解説 (1) 糸の張力の大き 基本問題 210 211 212 .00S 00 TH g m m(Lsin0) w²=mg tane w= L cose 2 Lcose =2π w 周期Tは,T= 第Ⅱ章 力学Ⅱ 別解 (2) お (2) おもりとともに 0 さをSとすると, 鉛 直方向の力のつりあ いから, Scoso S 円運動をする観測者 には、Sの水平成 と遠心力がつりあっ てみえる。 力のつり あいの式を立てると L m (L sine) w² 0 Scoso-mg=0 S=mg SsinO mg cose (2) 糸の張力の水平成分 Ssin0=mgtan0 が向 心力となる。 運動方程式 「mrw²=F」 から, Ssin0=mgtan (2)の運動方程式と同じ結果が得られる。 m(L sine) w²-mgtan0=0 Point 向心力は、重力や摩擦力のような力の 種類を表す名称でなく,円運動を生じさせる原 因となる力の総称で、常に円の中心を向く。 mg

解決済み 回答数: 1
物理 高校生

Wacって 緑で合ってますか?

の公式より、T=2 m √ ka • TB =1倍 T=√2k-1 10% TA VRD =2 となる。 ka 7B とすると, ばね振り子の周期 T=221 2m である。以上より, の答 2 電体は正者 西原休日は漁電西なので、いずれも 4C につくる電場の向きはAからBの向きである。AとBの電気 量の大きさQが等しく, AOBOの距離もRで等しい。 した って, AとBがそれぞれ点0につくる電場の強さ Ex, Eaは 等しく, 点電荷による電場の公式より,Ex=E kQ R2 となる。 以上より, AとBが点0につくる電場は,それぞれの電場を合 成して, AからBの向きへ強さ 2kQとなる。 R2 ばね振り子の周 T-2 また,一様な電場から A には左向きに, B には右向きに静電気 力がはたらくことになる。 よって, 一様な電場をかけた直後、リ ングは反時計回りに回転しはじめた。 +Q 一様な電場から 受ける静電気力 +Q リング A 回転をはじめる方向 T: ばね定 質量 点電荷によ 電気量 いる点の電 E=k R: 電場の 遠ざかる く向き。 EA EB 一様な電場 B. B Q -Q 一様な電場から 6 受ける静電気力 2の答 ① 3の答③ 問3 過程1から過程3の状態変化を圧力と体積の関係を表すグラ フに書き換えると,次図のようになる。 状態AとBは同じ温度 なので,それらの温度で決まる等温曲線上にあり,状態CとD も同じ温度なので、それらの温度で決まる等温曲線上にある。 こ こで,圧力と体積の関係を表すグラフの面積は,気体が外部にし た仕事の大きさを表す。 したがって, 気体が外部にする仕事の大 小関係は,グラフの面積を比較すればよい。 次図より,それぞれ の過程で気体が外部にする仕事の大小関係は, Wac<WAB<WAD - 103 -

回答募集中 回答数: 0
物理 高校生

解説のABの電荷から出ている矢印がなぜこの向きなるのか分かりません

点 【解説】 第1問 小問集合 ばねaとばねbのばね定数をそれぞれka, k とする。 a と 今はともに自然長からしだけ伸びているので、おもりAとBの それぞれの力のつり合い式は以下のようになる。 kad=mg, k₁d=2mg AとBの単振動の周期をTA, TB とすると, ばね振り子の周期 これらより, a に対するbのばね定数の比は、2となる。 2m ka 【ポイント】 公式より、T=2= 2 である。以上より, ばね振り子の周期 m TB 2ka T: 周期 問2 帯電体Aは正電荷, 帯電体Bは負電荷なので,いずれも点 の答③ ばね定数の 質量 0につくる電場の向きはAからBの向きである。AとBの電気 量の大きさ Qが等しく,AOとBOの距離もRで等しい。 がって,AとBがそれぞれ点0につくる電場の強さ EA, EBは 等しく,点電荷による電場の公式より,E=EQとなる。 点電荷による電場を 以上より, AとBが点0につくる電場は, それぞれの電場を合 成して,A から B の向きへ強さ 2kQとなる。 R2 R2 また, 一様な電場からAには左向きに, B には右向きに静電気 力がはたらくことになる。 よって, 一様な電場をかけた直後、リ ングは反時計回りに回転しはじめた。 ジ E=kQ 電気量 Qの点電荷から距離離れて いる点の電場の強さ 22 : クーロンの法則の比例定数 電場の向きは Q0 のとき電荷から 遠ざかる向き, Q <0 のとき電荷に近づ く向き。 一様な電場から +Q 受ける静電気力+Q A リング A 回転をはじめる方向 R EA EB B 一様な電場 B -Q 一様な電場から 受ける静電気力 2 の答 ① 3の答③ 変化を圧力と体積の関係を表すグラ A.Bの向き(?)

解決済み 回答数: 1
物理 高校生

なぜ(1)では外力が働き(2)では外力が働かないのですか?

チェック問題 2 図のように, 長さ 質量m のおもりをつけた振り子を60° 60° 傾けて静かに手放すと、 最下点 で, 水平面上に置いてある質量 1 2mの物体に,反発係数 2 の 2m ATOLEA 8. 8分 衝突をした。 水平面と物体との動摩擦係数をμ' とする。 (1) 衝突直前のおもりの速さvo を g, lを用いて求めよ。 (2) 衝突直後の物体の速さ Vを, v を用いて求めよ。 (3) 物体が水平面上をすべった距離L,V,μ'を用いて 求めよ。 T 解説 まず (1) では 「振り子の運動」 (2) 「衝突」 (3) 「物体が 水平面をすべる運動」の3つの運動に完全に分けて, それぞれの運動 とに考えていこう。 (1) まずこの 「振り子の運動」では, おもりには2つの保存則のうち何が使 えるかな? p.165の「マニュアル」 ①②③の手順にしたがって考えてみて。 え~と、おもりには,①糸の張力と重力という外力がはたらいく ているから、運動量は保存しない。 そして、 ②衝突はない。 あ! ③摩擦熱はまったくないから力学的エネルギーは保存するぞ! エクセレント! 図a で, 《力学的エネルギー保存則》 mgl (1-cos 60°) よって、v=vgl 12 後 高さ 0 mvo (2) 次に 「衝突」 でおもりと物体に着目すると 2つの保存則のうち何が使えるかな? えーと。①おもりと物体に着目 すると外力ははたらかないから、 運動量は保存。 でも、あ~! ② の非弾性衝突だから、 衝突熱が発生して力学的エネル ●ギーは保存しないや。そこで、 反発係数の式だ。 前 2m 11 コンッ! オミゴト! 図bのように、衝突後の速度 を仮定し、運動量保存則》より 図b ” を消すと. V = 2 mv=mu+2mV 反発係数の式より、 1 V-v 2 Vo (3) 最後の 「物体が水平面をすべる運動」では,物体の何が保存している かな? うーん。 ①動摩擦力が外力としてはたらくから、運動量は保く 存しないぞ。 また, ②衝突はないな。 そして、 ③摩擦熱が発生 した分、力学的エネルギーも減っちゃっている グレート! 図cで、摩擦熱力学的エネルギーの減少分より. μ'x2mg × L=1×2mV2 2 動摩擦力 こすった 前後 2m 摩擦熱 60° 距離 V +0 高さ 1(1 - cos 60') V2 μ2mg ジョリ よって, L= 2μ'g ジョリ 図 C -Vo a

未解決 回答数: 1