学年

教科

質問の種類

物理 高校生

(3)のどうしてmが2mになるんじゃなくてKが2kになるのか分かりません。普通に考えて重さ2倍にならないからkが2倍ですか?? あと、(3)のx=a/2のときのtなんですが、私の解き方のどこがダメなのか教えて欲しいです🙇🏻‍♀️答えが合わないんです😭3枚目です。 よろしくお... 続きを読む

必解 52. 2本のばねによる単振動〉 A 00000 P 図のように、なめらかな水平面上に質量mの物体Pが同 じばね定数をもった2つのばね A,Bとばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりαだ けずらしてからはなす。 このとき物体Pは単振動する。単振動は等速円運動のx軸上への正 射影の運動であるといえる。時刻 t=0において, 物体Pはちょうどx座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして、次の問いに答えよ。 (1) 任意の時刻における物体Pの位置xおよび速度vを,等速円運動の角速度を用いて 表せ。 (2) 任意の時刻において物体Pが位置xにあるときの加速度αを, ωとxを用いて表せ。 また, 2つのばねAとBから受ける力Fを, kとxを用いて表せ。 (3) 物体Pがx=α に達してから, 初めて原点Oを通過するまでの時間 to と, 初めて x=. 1 =1aを通過するまでの時間を,kmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 Pの位置エネルギーUの最大値とそのときの位置を表せ。 ただし, wやTを用いないこと。 (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に, xを横軸にと ってグラフに示せ。このとき座標軸との交点を, a, k および を用いて表せ。また,物 [香川大 改 体Pが時間とともに図上をたどる向きを矢印で表せ。

解決済み 回答数: 1
物理 高校生

この問題の解き方が下の解説を読んでも理解が出来ません💦 教えてください。よろしくお願いします。

空気の抵抗は JK=0 U=mgh 例題2 ばねと力学的エネルギーの保存 軽いばねの一端を天井に固定し, 他端に質量mの物体をつるすと, ばねは自然長からだけ伸びてつり合った。 この物体を, ばねの自然長の位置まで手で持ち上げて、静かに手をはなした。 重力加速度の大きさをgとし, 重力による位置エネルギー の基準面は、ばねの自然長の位置にとるものとする。 (1)このばねのばね定数を求めよ。 (2)ばねの自然長からの伸びがxになる点を通過するときの物体の速さがであるとする。このときと手をはなした直後で, 力学的エネルギーは保存される。 力学的エネルギー保存の式を書け。 (3)つり合いの位置を通過するときの物体の速さを求めよ。 (4) 物体が最下点に達するときのばねの伸びを求めよ。 解説 (1)このばねのばね定数をkとすると,図のBのときの 物体にはたらく力のつり合いより, B mg mg = kl よって,k= -12 mul = 0 になるため (2)図のAとCについて考え,k= 0+0+0= 1 2 m² mỏ – mgx + (3) 図のCについて, x=1として,(2)の式に代入すると, mgを を代入すると, 0000000 自然長 0 mg x² 21 K=0 つり合いの U = 0 + 0 位置 kl 00000000 Beet K=1/2m02 U=-mgl+1/k12 CK=1/23 mv2 U= mgx+1/2/kx2 0=1/2m² -mv²- mgl + -mgl 2 Vo mg x さは基準 となる。 v>0, v=√gl (4)図のDについて,求めるばねの伸びをひとすると, 最下点でv = 0 だから,(2)の式に代入すると, 最下点 K = 0 U= -mgl' + kl² 0 = - mgl' + mg_ 91,2 l' ≠ 0 だから, l'=21 21

未解決 回答数: 0
物理 高校生

(2)(3)についてです。なんで力学的エネルギーの法則を使うと分かるんでしょうか。

54 54 第1編 運動とエネルギー 例題 25 力学的エネルギーの保存 ➡64,65 解説動画 ともになめらかな, 斜面 AB と水平面 BC がつながっており,点Cにばね 定数 50N/m の長いばねがつけてある。 2.5m 水平面 BC から 2.5mの高さの点Aに質量 2.0kgの物体を置き, 静かにす べり落とした。 ただし, 重力加速度の大きさを 9.8m/s2 とし, 水平面 BC を 高さの基準にとる。 B (1) 点Aでの物体の力学的エネルギーは何Jか。 (2) 水平面 BC に達したときの物体の速さは何m/sか。 (3) 物体がばねに当たり, ばねを押し縮めていくとき, ばねの最大の縮みxは何mか。 指針 (2),(3) 重力や弾性力 (ともに保存力)による運動では、力学的エネルギー (運動エネルギーKと位置エネルギー の和)は一定に保たれる。 すなわち K+U=一定 解答 (1) KA+UA=0+2.0×9.8×2.5=49J 2) 力学的エネルギー保存則により KB+UB=KA+UA よって 1/2×2.0×2+0=49 v²=49 ゆえにv=7.0m/s (3)(2)と同様に, K+U=KA+UA ばねが最も縮んだとき, 物体の速さは 0 であるから K = 0 なんでこの式 つかうか POINT ①運動エネルギー ②重力による位置エネルギー = 1/2m2 U=mgh ゆえに x=1.4m よって 0+1/2×50×x=49 2 49 7.02 *'-10-30.00 x2= == 25 5.02 ③弾性力による位置エネルギー =1/2/kx2

解決済み 回答数: 1