学年

教科

質問の種類

物理 高校生

8 3)解き方を図を使って解説してほしいです 答え 2.4倍

惑星の めいしょう 名称 8 資料の読解 表は,太陽系 質量 わくせい 平均密度 の惑星における, 太陽からの (地球=1) 〔g/cm²] 0.82 5.24 1.00 5.51 平均距離,質量,平均密度, 公転周期についてまとめたも のである。 次の問いに答えな さい。ただし, 太陽からの平均距離 質量は地球を1としたときの値である。 0.11 3.93 317.83 1.33 あたい ►Support (1) 木星の体積は、地球の体積のおよそ何倍か。 次の ア~エから選び, 記号で答えなさい。 ア約80倍 ) (1) 体積質量・密度の関係を,密 度の公式から考えてみよう。 イ約130倍 金星 地球 火星 木 星 太陽から 太陽からの平均距離 (地球) 0.72 1.00 1.52 5.20 4章 地球と宇宙 47669 公転周期 〔年〕 20.62 1.00 1.88 11.86 (2) それぞれの速さを求めるとき, 共通する計算は省略できるので, 工夫してみよう。 (3) 金星は、太陽の直径の100倍の ように見えるが,これは地球から の距離が考慮されていないので注 意しよう。 ウ約230倍 エ約1300倍 が (2) 金星,地球, 火星がそれぞれの公転軌道を移動す る速さを,表をもとに計算した。 このとき, 移動す る速さが速い惑星から順に並べるとどうなるか。 となる。か?? (3) 金星が太陽の前を通過したとき, 太陽の表面のようすを観察 した。 図は、記録用紙にかいた直径10cmの円に太陽の像を一 ) ち 金 黒点 致させたときの記録で,黒点の大きさは直径2mmの円形 金星 星の大きさは直径3mmの円形であった。 実際のこの黒点の大 きさは、実際の金星の大きさの何倍になるか。 小数第2位を四 ( 捨五入して答えなさい。 太陽

回答募集中 回答数: 0
物理 高校生

高3物理です。③からの解き方を教えてください。

その2:楕円軌道においてA点での衛星の速さをVA, 地球 (焦点)からの距 離をra,同様にB点での衛星の速さと距離をVB, YB とおく。 A点とB点において力学的エネルギーは保存されている。つまり, 無限遠 1 Mm 1 / mv ² + (-6 mm) = = mv² + (-6 Mm) -G が成り立つ。また, ケプラーの第2法則 (面積速度一定の法則) から 1 A その3: 図のように地球を回る衛星 A,Bの軌道の中心を0, 0', 半長軸の長さ をa,b, 公転周期をT, To とするとケプラーの第3法則から以下の関係がある。 || でん 1 TAVA = 2 TBVB が成り立つ。 図のように楕円軌道からはみ出していてとても成り立たないように見えるが実際の速さは 10km/s の桁で軌道の大きさは 102~105km のオーダーなので十分な精度のある近似になっている。 地球 'B Tro 「B The Moon kR 地球 A ave b ・QR- 1.B B "B B Bro B 【達成すべき目標】 ① 第1宇宙速度vo をg, R で表し数値計算せよ。 ②静止衛星軌道の半径rをg, R, Te,πで表し数値計算せよ。 また, それが地球の半径Rの何倍になるかkRのkを 求めよ。 ただしは地球の自転周期である。以下の問題ではここで求めた kRを使うと式が簡単になる。こ 6.6R こで,重力加速度の大きさは 9.8m/s2, 地球の半径を6.4×10m とする。 R ③A点での速さを av (第1宇宙速度のα倍) にしたとき, 静止衛星はB点を通る楕円軌道に入ったとする。 αの値を求めよ。 ④楕円軌道上の衛星がB点に達したときの速さはvになっている。 βの値を求めよ。 AB ⑤ケプラーの法則を使って、 静止衛星がA点からB点に達するまでの時間 taBをg, R, πで表し数値計算せよ。 これにより, 日本が楕円軌道の長軸上に達する tag 前に衛星を加速させればよい。 ⑥目標の静止衛星の円軌道に入るためにB点での速さを yue に加速する必要がある。 yの値を求めよ。 ⑦ そもそもなぜ静止衛星軌道が存在するのか。 地球の自転と同じ周期Tで回ればよい。 この疑問にケプラー の法則を使って反論せよ。

回答募集中 回答数: 0
物理 高校生

Ⅰ(1)について. ドップラーの式を使って解き,答もあたりましたが,疑問があります.問題文に"われわれから速さv[m/s]で遠ざかっている"とありますが,これは相対的な速度のことだと思います.そうすると,ドップラーの式:"f'={(V-v1)/(V-v2)}f"に当てはめ... 続きを読む

Ⅰ 宇宙には活動的中心核をもつ銀河が数多く知られている。 それらの中心部には小サイズで巨大質量の 天体があり、その周りを厚さの薄い分子ガス円盤が高速回転している姿が明らかになってきた。 比較的穏やかな渦巻き銀河M106 は, われわれの銀河から遠く離れていて, 数100km/s もの速さで 地球から後退している。その中心付近から放射されている水蒸気メーザー (波長 入 = 0.0135m) の電波 の観測が野辺山の電波望遠鏡で行われた。 その結果, 図1のようにこの銀河の後退運動によるドップラ 一効果でずれた波長 入 〔〕 付近に数個の強い電波ピークが観測された。 その波長域の最小波長 入 〔m〕, 中心波長 入 〔m〕, および最大波長袖 〔m〕 は -=0.0016, th No -=-0.0020, (19510円)*(30 で与えられることがわかった。 1 No ic 図 1 Ac-do Zo λ2-10 20 -=0.0052 水蒸気メーザーで 輝くスポット 回転 回転 分子ガス円盤 中心天体 図2 (1) 波長 〔m〕 の電波を放射する天体が, われわれから速さ 〔m/s] で遠ざかっているとき,われわ れが観測する波長が入[m] であるとする。 vを入, 入および光速 c を用いて表せ。 (2)c=3.0×10°m/s として, 図1の波長 A, Ac, A に対応するガス塊のわれわれに対する後退速度 ひ1, vc, v2 [m/s] を ] x10m/sの形で求めよ。 には小数第1位までの数字を入れよ。 (3) ひ-vc, |v-vel の値を求めよ。 TEX Ⅰ (3) より | ひ-vc|=|vz-vel となるが, この結果は複数の放射源 ( ガス塊)が全体の中心の周りを高 速回転していることを暗示している。 ⅡI 中心波長 Ac 付近で明るく輝く複数のガス塊の運動の時間変化が調べられた. その結果, これらのガ ス塊は中心から薄いドーナツ状分子ガス円盤の内側端までの距離 Ro=4.0×10m を半径とする円軌道 を一定の速さで回転しているとするとよく理解でき, その速さは Ⅰ (3) で求めたガス塊の後退速度の差 Vo(=|u-vc|=|02-vel) と一致することがわかった。 図2に回転する分子ガス円盤の概念図を示す。 ただし、 万有引力定数をG[N・m²/kg ] とする. (1) 質量M(kg) の中心天体の周りを質量のずっと小さい (m[kg]) ガス塊が半径R [m]の円周上を速さ V [m/s] で万有引力による円運動をしているとき, ガス塊の円運動の運動方程式を記せ。 ●解説 I (1),(2) 天体の出す電波の振動数をfo (=clio) とすると, 長さc+vの 中に fo波長分の振動が含まれるから 研究 λ=c+v_c+v., -.Ao fo (3) Ⅰ(2)の結果より 2-20 20 C この結果に、問題文で与えられた 入=入, Ac, i に対する (^-入o)/20 の値,および c=3.0×10°m/s をそれぞれ代入すると ひ=(-2.0×10-3)×(3.0×10°)= -6.0×10m/s ve=1.6×10-3)×(3.0×10°)=4.8×105m/s v2=(5.2×10-3)×(3.0×10°)=15.6×10m/s ドップラー効果◆ STEFON 波源が速さで後退すると,cの長さに含まれていた波がc+v の長さ に含まれることになって、波長が伸びる。(単泉) ところで, 図のように, ある点を中心に円運動をしている天体から出る 光 (電磁波)を十分に遠方から観測する場合, 中心天体の後退速度をv, ガ ス塊の円運動の速さをVとすると, 点a, c から出る光の後退速度はvc =v, bから出る光の後退速度は dから出る光の後退速度は V, v2v+V である。ゆえに V1-Ve=-V, #PED WAXXENT v2-vc=V となる。逆に,ひ-vc|=|v2-vel であれば,ガス塊の運動が円運動であることが暗示される。 なお、M106 の後退速度はせいぜい106m/s程度で,光速の1/100 以下であるから,相対論的なドップ ラー効果の式ではなく,普通のドップラー効果の式を用いてよい。 観測者 v-v b d V FV v+V a

回答募集中 回答数: 0
物理 高校生

質量Mの台座りにバネ定数にのバネが取り付けられ、自然長よりdだけ縮めた状態で質量加の物体がセットされている。M =2mとして下の問い(問1~問4)に答えよ。 ただし、バネは理想的であり、台座や物体と床の間の際線は考えず、最初の段階では台座も物体も静止しているものとする。 ... 続きを読む

【2】下図のように質量Mの台座Dにパネ定数kのバネが取り付けられ、 自然長よりだけ めた状態で質量mの物体Aがセットされている。 M=2mとして下の問い (問1~問4)に 答えよ。ただし、パネは理想的であり、台座や物体と床の間の摩擦は考えず、最初の段階で は台座も物体も静止しているものとする。 簡Aの状態でパネが蓄えているエネルギーはいくらか。 最も適切なものを①~5のうちから 4 Ⓒkd e NIN A) LI 台座D ②d 固定 000) M A 図のように、台座Dを固定した状態でパネを開放し、物体Aを右方向に射出した。 物体 5 Aの速さはいくらになるか、最も適切なものを①~③のうちから一つ選べ。 物体 A (00000) d 116 m 床 @Md² E $(M+m)d 床 69 2d √ 以下運動も考える。 3 Cのように、台座Dを固定しない状態でバネを開放して物体Aを射出すると、 同時に台 Dも左方向に動く、この場合、台座の速さはいくらになるか。 最も適切なものを①~ のうちから一つ選べ。 D) 物体目 台座D (W) Ⓒ%+4√ Vo M これはつまり、ロケット推進の原理である。 力を加える相手のいない宇宙空間で、 ロケッ ト推進剤と呼ばれる物体を後方に射出する反作用で前方へ加速する。 この際、 推進剤の 使用によりロケットの質量が小さくなることにも注意する必要がある。 MD (0000)) 問4 実は台座Dは、図のように質量mの二つの物体BとCとでできている。 また, 物体B と 物体Cは、パネ定数kのバネをdだけ縮めた状態でセットされていた。 図のように物体 の切り離し後にこのパネを開放して物体Cを右方向に射出した後、 物体Bの速さ V はい くらになるか。 最も適切なものを①~④のうちから一つ選べ。 7 図C 物体 C ②d vo+d√ 2 v₁+√ vo+ d im 17 床 E 000000) 図E Vo +d. Jal [ 3m Vo + d.

回答募集中 回答数: 0