学年

教科

質問の種類

物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 高校生

オ、が分かりません。詳しい解説をお願いします。

図1のように、理想気体が入った容器 A と容器Bがあり, コックの付 2 いた容積の無視できる管でつながっている。 容器Aの容積は Vo で一 定であるが, 容器Bには滑らかに動く軽いピストンが付いていて容積が変 化するようになっている。 ピストンには常に一定の大気圧 Poがかかって いる。容器Aと容器 B, コック, 管, ピストンはすべて断熱材でできてい る。また, 容器Bには気体を加熱および冷却できる温度調節器が取り付け られていて,気体の温度調節が可能である。 温度調節器の体積と熱容量は 無視できるものとする。 次の文章中の空欄 ア~オ に入る適切な数式を記せ。 はじめ、コックは開いていて, 容器A内と容器B内の気体はともに圧力 Po, 温度 To, 体積 Vo の状態にあった。 その後, 過程 ①~③のように容器内の気体の状態を変化させた。 過程 ① まず, コックを開けたまま気体をゆっくりと加熱した。 これにより、温度調節器から気体へ熱量Q 容積 Vo 容器A 大気圧 Po |!! コック 温度調節器 emm オ:Q 容器B が与えられ, 容器A内と容器B内の気体の温度はともに 2T になった。 加熱後の容器B内の気体の体積は [ア] である。また、この過程で容器内の気体が外部にした仕事はイであり、容器A内と容器B内 の気体の内部エネルギーは,あわせてゥだけ増加した。 過程 ② 次に、コックを閉じ、 容器B内の気体だけをゆっくりと冷却し、体積をV にした。 冷却後の容器B 内の気体の温度はエである。 過程 ③ 次に、再びコックを開いた。 温度調節器を作動させずにしばらく待つと、容器A内と容器B内の気 体の温度はともに To になった。 この過程でピストンの位置は変化しなかった。このことから, 過程 ② で 気体から温度調節器へ放出された熱量はオであることが分かる。 7: 300 イ: 2Povo 7: Q-2P₂ Vo I: 3 To

回答募集中 回答数: 0
物理 高校生

物理の問題です。問4と問6の求め方が分かりません

11 の解答群 ① 0.40 ⑥ 2.8 (5) ア. 図の状態で, P と Qは静止していた。 √3 9 13 2 第5問 図のように 質量3mの物体P と質量mのおもり Q が軽い定滑車を 通した糸で結ばれている。 Pは, 水平 方向に対して角30° をなす斜面上に置 かれており, Q は定滑車から鉛直方 向につり下げられている。 斜面はあら √3 9 く, Pと斜面との間の動摩擦係数は である。PとQを結ぶ糸は軽く、つねに 張っているものとする。 重力加速度の大きさをgとし, 空気抵抗は無視する。次 の問いの答えとして正しい式または正しい向きをそれぞれの解答群の中から1つず つ選べ。 ② 1.2 73.2 9 2mg mg 問1Pが斜面から受ける垂直抗力の大きさはいくらか。 解答群 mg ② 1 6 mg 10 ③ 1.6 (8) 3.6 mg 3√3 2 mg (3) 7 物体P 4 2.0 ⑨ 5.0 30° N/w 3 2 ・水平方向 mg mg 問2Pが斜面から受ける静止摩擦力の向きはどちら向きか。 解答群 ①Pが受ける重力と同じ向き (3 Pが受ける抗力と同じ向き Pが受ける垂直抗力と同じ向き (5) 2.4 10 6.0 12 AN 4 3 13 3 mg √3mg Q Pが受ける重力と逆向き (4) Pが受ける抗力と逆向き (6) Pが受ける垂直抗力と逆向き 神奈川工科大 〈一般A1/30) ⑦Pが受ける糸の張力と同じ向き Pが斜面から受ける静止摩擦力の大きさはいくらか。 解答群 問3 ⑤ √3 9 3 2 9 √7 mg 問 4 mg (6) mg 5 1633 9 9 √√3 9 (5 Pが動き始めた後のPの加速度の大きさはいくらか。 解答群 3 2 イQに質量 2m のおもりを追加し、糸につり下げられたおもりの全質量を3m とした。おもりを静かに放したところ、Pは斜面上をすべり出した。 mg mg ⑨7, mg 5 ⑥2mg ⑩0 2√3mg 問5 糸の張力の大きさはいくらか。 解答群 1 2 mg (2) 3 7 mmgh 2 6 mgh 3 g (2) 9 2 (10 ⑧Pが受ける糸の張力と逆向き ⑧8⑧ 6 2mg mg (6) mg 2√3 mg 3973 5 2 mg mgh 9 16 2023年度 物理 27 9 (9) (3) ・mgh 4 7 14 mg 9 √√3 4 mg 9 √7 2 3/3 7 mgh mg 15 3 mgh 2 mg 2 (5) 問 6 P が動き始めてから斜面の上を距離んすべる間に、 Pの運動エネルギーは いくら増加するか。 17 解答群 ① 00 4 √7 4 72 g 9 mg 3√3 2 ① mg 3. 8 √2 mgh mmgh

回答募集中 回答数: 0
物理 高校生

これ基底状態から第一励起状態になるときk格からL格に電子が1つ移ることで電子同士の斥力でなんかすごいことになったりしないんですか?

594. フランク・ヘルツの実験 解答 (1) 解説を参照 (2) 2.5 指針 加速された電子の運動エネルギーが, 水銀原子の基底状態と, 最もエネルギーの低い励起状態とのエネルギー差に等しくなるとき, 原 子内の電子を励起し、エネルギーを失う。 エネルギー差に等しくないと きは、原子内の電子を励起できず, エネルギーを失わない。 解説 (1) FG間の電位差で加速された電子は,その運動エネル ギーが小さいとき, 水銀原子に衝突しても, 原子内の電子を励起でき ないので,途中でエネルギーを失うことなくPに達する。 しかし, 加 速した電子のエネルギーが, 水銀原子の基底状態と, 最もエネルギー の低い励起状態とのエネルギー差に等しくなると,電子は,水銀原子 内の電子を励起し, エネルギーを失う。 このため,電子は, Gよりも わずかに電位の低いPに到達できなくなり、 電流計に流れる電流が減 少する。 さらに電位差Vを大きくすると,やがて電子のエネルギーは, 2回目の励起によって失われ、 再び電流が減少する。 このようにして, 電流は,増加・減少を繰り返す (図)。 (2) 電位差Vが4.9V 大きくなるたびに、電流は減少を繰り返すため. 水銀原子のエネルギー準位の差は 4.9eV である。 また, 観測される紫 外線は, 励起された水銀原子内の電子が基底状態にもどるときに放出 される光子であり, 4.9eVのエネルギーをもつ。 プランク定数をん, 電気素量をe, 光速を c, 紫外線の波長を入とする と. eV= 入について整理し, 各数値を代入すると, i= hc eV = hc 入 ( 6.6×10-34) × ( 3.0×10) (1.6×10-19)×4.9 = 2.52×10-7m 2.5×10-7m 理 C

回答募集中 回答数: 0
物理 高校生

こういう記述系のことをちゃんと書くことが苦手なのですが 具体的に押さえておくべきポイントとかありますか?

593. 水素原子の 解答 (1) 解説を参照 (2) 6.6×10-7m 指針 電子がより低いエネルギー準位に遷移するとき、準位間のエネ ルギー差に相当するエネルギーをもつ光子が放出される。 このとき,準 位間のエネルギー差が大きいほど, 放出される光子の波長は短い。波長 の長短とエネルギーの大小を関連させて考える。 (2) では, 与えられた式, 404 12/12 (1111) を用いる。 =R 12 222 n n 解説 (1) エネルギー 準位の高いところから低 いところに電子が遷移す るとき, 準位間のエネル ギー差に相当するエネル ギーをもつ光子が放出さ れる。 F は, 最も波長が 短い(エネルギーが大き い) 系列に属しており, この系列は,準位間のエ ネルギー差が最も大きい 系列である。したがって,電子が遷移した後のエネルギー準位は最も 低く,その量子数はn'=1である (図)。 また,F は,その系列の中では最も波長が長く、エネルギーが小さい。 これから,遷移する前のエネルギー準位の量子数は, n' = 1のエネル ギー準位との差が最も小さいn=2である。 量子数2のエネルギー準 位から量子数1のエネルギー準位への遷移による電磁波である。 (2) D, E は, 波長が2番目に短い系列に属しており,この系列は, 準 位間のエネルギー差が2番目に大きい系列である。 したがって, 電子 が遷移した後のエネルギー準位の量子数は, n'=2である(図)。 D は, その系列の中で最も波長が長く, エネルギーが小さいので, 量子数 n=3のエネルギー準位から量子数n'=2のエネルギー準位への遷移 によるものである。 Eは, Dの次に波長が長いので,n=4からn'=2 へのエネルギー準位間の遷移によるものである。 波長 エネルギー D E B 各系列で,準位間の エネルギー差が小さ い一部の遷移を示す。 FC 量子数 ∞ 与えられた式, 1/1=R ( 17/11/12 ) を用いると,Eの輝線の光の波長 n²

回答募集中 回答数: 0