学年

教科

質問の種類

物理 高校生

物理基礎の問題です! アンダーラインで引いたところがなぜこのような式になるのか分かりません。そもそもが間違っていたらご指摘お願いします。答えは○3みたいです。 分かる方お願いします!

物理基礎 問4 一般に,大きさTの力で引かれた一様な弦(糸) を伝わる横波の速さは, Tに比例することが知られている。 図5のように、水平な台上の左右のなめらかな滑車に通した糸の両端に質 量mのおもりと質量4mのおもりをそれぞれつるした。 左の滑車からの距 離がL, 右の滑車からの距離が2Lとなる位置の糸を振動装置の振動源Oに 固定して水平に張った。 振動装置は台に固定されている。 振動源 0 と左の 滑車の間の糸を糸 A, 右の滑車の間の糸を糸Bとする。 振動装置の振動数 を調節して,糸Aが共振して腹が二つの定常波(定在波) が生じるようにし た。 このときの糸A, B の振動のようすの概形を表す図として最も適当な ものを、下の①~⑤のうちから一つ選べ。 ただし, このとき糸Aが振動源 0を引く力の大きさと糸Bが振動源Oを引く力の大きさは異なっているが, 振動源は左右に動くことはないものとする。 4 L 2L 滑車 糸A 糸 B 滑車 振動装置 おもり 台 ・おもり m 14m 図5 糸B 糸 A 糸 A 糸B 定常波は生じない A) λ = L f = 4 Rimg B) = = * + kn4mg 問5 次の文章中の空欄 ア なものを,下の①~⑥のう 電磁波は, ある場所で生 ア なって空間を伝わるもので 進行方向が垂直な べて電磁波であり, 波長( 可視光線より波長が長い どで利用されている。 ① ア 縦波 縦波 縦波 横波 横波 ⑥ 横波 [23] 糸 A 糸B 糸 A 糸B -KN4mg L kamg 糸 A 糸B 2 L

回答募集中 回答数: 0
物理 高校生

2枚目の写真が自分の考え方なんですけどなんで3倍振動と5倍振動にならないんですか?教えてください🙇

引き出す てて音を聞いた。 すごとにBで開 ・振動数は何Hz その後、C 聞こえる音はそ なお、クインケ 16 東海 さがある。た 弦から出る 00Hzのおんさ なりが生じた。 じなかった。 -171 図のように,円筒形のガラス管を空気中で鉛直に立て,その中に 水を入れる。 ガラス管の底と水だめはゴム管によりつながれており, ×180 水だめを上下することにより管内の水位を調整できる。いま,管口 近くにスピーカーを置き, 振動数が450Hzの音を出し続ける。 この状態で管内の水面を管口近くまで上げ, そこから水面を徐々 最も大きく聞こえ, 距離が 55.0cmのときに再び音が最も大きく聞 に下げていくと, 管口から水面までの距離が170cmのときに音が こえた。このとき,スピーカーから出ている音の波長はアcm, 音の速さは m/sである。 ガラス 2 スピーカー 水だめ cmの位置である。ま ここで、管口から水面までの距離を55.0cmに固定する。このと き、管内の空気の密度が時間的に変化しないのは管口から [18 千葉工大] 182 た水面の位置をそのままにして、スピーカーから出る音の振動数を450Hzから徐々に 大きくすると、次に音が最も大きく聞こえるのは,振動数が エHz のときである。 ただし、開口端補正は音の振動数によらず一定とする。 × 189 気柱の振動■図の太さ一様な管は,ピ ストンBを動かして,管口AからピストンBまで の長さを調節できるようになっている。 音源から振動数の音波を出しながら,Bを動かしてをしにしたらよく共鳴した。 続いてBをゆっくり動かしたら,しがのとき再びよく共鳴した。 開口端補正は無 視する。 (1) 音波の波長を, l を用いて表せ。 (2), 音波の振動数をfから次第に大きくしたら, 振動数がf' のときまた よく共鳴した。 4 人をする f'はfの何倍か。 ■さを,m,s 数は変わら 最大) 1 ヒント 185 2 つの経路の経路差は,引き出した距離の2倍ずつ長くなっていく。 186 弦を長くすると, 基本振動の波長が長くなり、 振動数が小さくなる。 187 (4) 振動数が (3)の結果と等しいことを利用する。 188 (ウ) 空気の密度が時間的に変化しないのは、定在波の腹の位置である。 189(2) 気柱の長さが - 波長の何個分かを考えるとよい。 -182

回答募集中 回答数: 0
物理 高校生

物理基礎の問題です! 類題の(1)を分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

例題② 等速直線運動と等加速度直線運動 図のように, 小球Aはx軸上を正の向き t=0s に5.0m/sの速さで等速直線運動をし,時 刻 t=0s に原点を通過する。 また, 原 点にあった小球Bは, 時刻 t=0s から 初速度0で等加速度直線運動を始め、 A5.0m/s B x [m] 5.0m/s t=10s t=10s のとき,x軸の正の向きに 5.0m/sの速さであった。 次の問いに答えよ (1) A, B の運動を表すv-tグラフをそれぞれ描け。 (2) t=10s での, A,Bの位置をそれぞれ求めよ。 (3) BがAに追いつく時刻と,そのときの位置を求めよ。 指針 (1) 等速直線運動, 等加速度直線運動のv-tグラフの特徴に着目する。 (2)等加速度直線運動の式を利用してBの加速度を求め, さらに式を用いて A, Bの位置を求める。 (3) A, B の位置をそれぞれ式で表して, 一致する時刻を求める。 解 (1) A, B のひtグラフはそれぞれ t軸に平行な直線と原点を通る直線である。 (2)時刻でのA,Bの位置をそれぞれ [m/s] IA, IB とする。 Aは等速直線運動を するので式(4)より, 0.50 t …① B x=5.0m/sxt Bの加速度をαとすると, 式 (8) より, 5.0m/s =0m/s+α×10s よって a=0.50m/s2 式(9) より, 1 Ip=0m/sxt+1/x0.50m/s2x t2 2 t=10s をそれぞれ式①、②に代入して, 5.0 A 0 t t(s) I=5.0m/s×10s=50m,xp=1 - ×0.50m/s2x (10s)=25m (3) A=IB となるときなので,時刻をtとして,式①、②より, 5.0m/sxt=0m/sxt+1/2 ×0.50m/s2x t よって, t=20s このときのA,Bの位置は,式① (式②でもよい)にt=20s を代入して, 5.0m/s×20s=1.0×102m 類題 2 例題②の小球 A,Bの運動について,次の問いに答えよ。 Os≦t≦20s の間で,AとBとの間の距離が最も大きくなるのはいつか。 (2) A, B の運動を表す x-tグラフをそれぞれ描け。

回答募集中 回答数: 0