学年

教科

質問の種類

物理 高校生

(4)で、W=3/2nR⊿Tで⊿T=0からw=0になってしまったんですが、どうすればいいのでしょうか??

リード C 基本例題 25 気体の状態変化 PA 1molの単原子分子理想気体を容器の中に封入し,圧力 と体積Vを図のA→B→C→Aの順序でゆっくり変化さ3po せた。C→A は温度 T の等温変化であり,その際気体は 外部へ熱量 Q を放出した。 次の量を, To, Q, および, 気 Po 体定数Rのうち必要なものを用いて表せ。また,問いに答 O 第8章 気体分子の運動 気体の状態変化 69 えよ。 (1) 状態 B の温度TB (2) A→B の過程で気体が外部にした仕事 WAB と気体が吸収した熱量 QAB (3) B→Cの過程で気体が外部にした仕事 WBC と気体が吸収した熱量QBc (4) C→Aの過程で気体が外部にした仕事 WCA 問 Q=1.1RT のとき, 1サイクルの熱効率eを有効数字2桁で求めよ。 3poVo=RT A→Bは定圧変化である。 気体がし た仕事は 「W'= AV 」 より WAB=3pox (3Vo-Vo)=6poVo ①式を用いて WAB=2RT このときの内部エネルギーの変化 4UNBは「AU = 12/23nRAT」より 3 4UAB = 1 ×1×R(3To-To)=3RT 熱力学第一法則 「4U = Q+W」 と 「W=-W'」 より 「Q=4U+W'」 (W' : 気体がした仕事) なので QAB=3RT+2RT=5RT。 (3) B→Cは定積変化なので、気体が外部 にした仕事 WBc=0 である。 このと きの内部エネルギーの変化⊿UBCは 4UBc=1×1×R(T-3T) A =-3RTo Vo 指針 気体がした仕事を W' とすると, 熱力学第一法則 「4U = Q+W」と「W=-W'」 より 「Q=4U + W'」 となる。 各過程での Q, 4U, W' を表にまとめながら考えるとよい。 熱 効率を求めるとき, 「気体がした仕事」 は正の仕事・負の仕事をあわせた正味の仕事を考え る。一方, 「気体が吸収した熱量」 には、気体が放出した熱量を含めない。 「Q=4U+W'」 より 解答 (1) 状態AとBとでシャルルの法則を用 Vo_3Vo To いると TB よってTB=3To (2) Aでの状態方程式より 3poxVo=1×RT。 ►► 130 3VoV QBc=-3RT+0=-3RT。 [注 QBc<0であるから, 実際には気体 は熱を放出したことがわかる。 (4) C→A は等温変化なので, 内部エネルギ の変化 4UcA=0 である。 また,問題 文より,気体が放出した熱量はQである (吸収した熱量はQo)。 「Q=4U + W'」 より -Qo=0+Wc よって WcA=Qo 以上の結果を下の表にまとめる。 -3RT-3RTo 4U + W' A→B (定圧) 5RTo 3RT 2RTo BC (定積) 0 - Qo 0 -Qo CA ( 等温) 一周 2RTo-Qo 0 |2RT-Qo 問 気体がした正味の仕事 W' は W'=WAB+WBc+WcA=2RT-Qo 気体が吸収した熱量 Qin は Qin=5RT [注 放出した熱量を含めてはいけない。 W' 2RTo-Qo Qin 5RT。 よってe= ここで, Qo=1.1RT を代入すると 2RT-1.1RT 0.9 e= 5RTo -=0.18 5

回答募集中 回答数: 0
物理 高校生

この問題の(5)の解説の下線部が分かりません。 教えて頂きたいです。

5 気体の状態変化 ・ 熱効率 Anun 円筒容器にピストンで単原子分子理想気体を封じ、容器内外の圧力を1.0×105 Pa, 気体の温度を3.0×102K, 体積を 2.0×10-3m² とした。 このときの気体の状態をA として、次の手順で気体の状態を変化させた。 過程Ⅰ ピストンを固定したまま気体に熱量を与えたところ,気体の圧力は 2.2×105Paになった (状態B)。 過程Ⅱ 次に,気体の温度を一定に保ちながらピストンをゆっくりと操作したと ころ,気体は 3.5×10℃Jの熱量を吸収し、 圧力が1.0×10 Paにもどっ た (状態C)。 状態Cで気体を放置したところ、 気体はゆっくりと収縮し、 状態Aに もどった。 過程ⅡI (1) 過程IⅡI→Ⅲの変化を、横軸に体積V, 縦軸に圧力をとったグラフと, 横 軸に温度 T, 縦軸に体積Vをとったグラフに示せ。 なお, グラフには変化の 向きを示す矢印を入れ, 状態 A~Cでの横軸と縦軸の値を明記せよ。 (2) 各過程での気体の内部エネルギーの変化 401 〔J], 4U [J], ⊿Um [J]を求めよ。 (3)各過程で気体がされる仕事 W 〔J〕, WⅡ [J], Wm [J]を求めよ。 (4)過程IとⅢで気体が外部から吸収する熱量 Q1 [J], QⅢ [J]を求めよ。 (5) この1サイクルにおける熱効率を求めよ (分数で答えてよい)。 20 8

解決済み 回答数: 1
物理 高校生

Bの(1)の問題で、答えは写真の通りです。友達にQin=ΔU+Woutの方法を教えてもらい、そのやり方でやってみたのですが、このやり方だと状態C→Bで仕事をするので、その分の熱量が加わると思うのですが解説見ると含まれていません。どのように考えればいいか教えてください。 参考... 続きを読む

~ N1, の気 これ を $ F, 必68. 〈等温変化 ・ 定積変化・定圧変化 > なめらかに動くピストンがついた円筒容器内にn [mol〕の 理想気体が入っている場合を考える。 気体は外部から熱を吸 PA 図 1 収したり, 外部へ熱を放出することができる。 理想気体の内 部エネルギーは, 分子の数と絶対温度 T [K] のみで決まる。 この理想気体の定積モル比熱 Cv_[J/(mol・K)〕 や定圧モル比 Cp [J/mol-K)] は,温度によらず一定である。 気体の圧 カ [Pa] と体積V[m*] の関係を表した図(図1)を参照し て,次の問いに答えよ。 気体定数はR_J/(mol・K)〕 とする。 〔A〕 温度の等しい状態Aと状態Bを考えよう。最初、気体は圧力 ^ [Pa], 体積 Va [m²], 温度 T 〔K〕 の状態Aにある。 状態Aから状態B(圧力 DB [Pa], 体積 VB 〔m²〕,温度 T1, ただし VB<VA)に達する過程はいろいろ考えられる。 過程 I は, 等温変化により状態A から状態Bへ変化させる過程である。 過程Iで気体が外部からされた仕事を W 〔J〕, 外 部から吸収する熱量を Q1 〔J〕 とする。 このときW と Q の間に成りたつ関係式を求めよ。 〔B〕状態Aから状態Bへ変化させる過程ⅡIⅠは,まずピストンを固定して外部から気体に熱 を与えて状態Aから状態 C (圧力 DB, 体積 VA, 温度 T2 〔K〕) まで変化 (定積変化) させ, そ の後圧力を一定に保ちながらピストンを動かして状態Cから状態Bへ変化 (定圧変化) さ せるという過程である。 PB(T=T₁) II DB 0 III D 1 VB I III C(T=T₂) II A(T=T₁) VA V (1) 過程ⅡIで気体が外部から吸収する熱量 Q2 〔J〕 は, 状態Aから状態Cへの変化で気体が 外部から吸収する熱量と, 状態Cから状態Bへの変化で気体が外部から吸収する熱量の 和で求められる。 Q2 を Cv と Cp などを用いて表せ。 (2) 過程ⅡIで気体が外部からされた仕事 W2 〔J〕 , DB, VB, V』 を用いて表せ。 (3) (2)の結果と熱力学第一法則を用いて,過程ⅡIで気体が外部から吸収する熱量 Q2 を求め,

解決済み 回答数: 1