学年

教科

質問の種類

物理 高校生

・⑶についてなんで安定とわかるのか教えてください ・コリオリ力に関しては円環に束縛されているから議論が不要ということですか?

120 Part 2 109. 遠心力 運動する.さらに,この円環は,その中心Cを通る鉛直線のまわりに, 一定の角速度で回転 図のように、質量mの小球が、鉛直面内におかれた平語の円頭上に拘束されてなめらか できるものとする. 重力加速度をg, また, 円環の中心Cから円環の最下点0に向かう方向と 中心Cから小球に向かう方向との間のなす角を0 (0は図の矢印の向きを正; -m ≧0≦)とし て、この円環上に拘束された小球の運動に関する以下の問いに答えよ. 〔A〕 まず,円環が固定されて回転していない場合 (ω=0) を考える. (1) 点0から円環に沿った小球の変位の大きさが十分小さいとき, 小球の運動は点0のまわ りでの単振動とみなせる。このとき、小球の振動する周期を求めよ.ただし,角度0が十 分小さいときに成り立つ近似式 sin 0≒0を用いてよい. 〔B〕次に、円環が一定の角速度で回転している場合(ω≠0) を考える.ただし、以下の問 (2) (3) では,円環とともに回転している観測者からみたときの小球の運動について考える ものとする. (2) 角速度の大きさがある値wc より小さく,さらに, 点0から円環に沿った小球の変位 の大きさが十分小さくて小球の運動が点0のまわりでの単振動とみなせるとき, wc, お よびこのときの振動の周期を求めよ.ただし, 角度0が十分小さいときに成り立つ近似式 sin 0≒0とcos0≒1 を用いてよい。 (3) 角速度の大きさをwcより大きくすると, 円環の最下点以外の0=±0(0<br<↑の 点で小球にはたらく力のすべてがつりあう.cos , を求め, さらに、そのつりあい点が安 定か不安定かを答えよ. C 鉛直線 W 10. ......... 0 円環 小球 §2-4 慣性の法則

回答募集中 回答数: 0
物理 高校生

単振動の問題です 慣性力が働いているのに初めて衝突するまでの時間が何もない普通の平面の時と同じ時間になるのでしょうか?

(2) 図 1-2 に示すように、水平でなめらかな床の上を動く台車が台車 ある。 台車の床の上には質量 ma[kg]の小物体Aと質量 正の向き 小物体A 小物体B me [kg] (ma>me)の小物体Bが置かれている。 台車の床は 水平でなめらかである。 小物体Aはばね定数k [N/m〕 のばね の一端につながれ ばねの他端は台車の壁に固定されている。 小物体Bは小物体Aの右側に離れて置かれている。 ばねが自然 の長さで、台車と両小物体が静止していたときに力を台車に加 図 1-2 えて、台車を水平右向きに一定の加速度で運動させた。台車の加速度の大きさはα〔m/s'] であった。 小 物体Aが動き出した後で, 小物体Aの台車に対する相対速度がはじめてゼロになったときに小物体Aは小 物体Bに弾性衝突した。 この衝突は台車が等加速度運動を始めた時刻から [ 〔s] 経過したときに起 [[m〕 である。衝突直後の小物体Aの台車に対する 相対速度の大きさは (カ) [m/s)である。 衝突直後からは,衝突直後の台車の速度で台車が等速運動す るように台車に力を加え続けた。 小物体Aと小物体Bが再度衝突する前に、小物体Aの台車に対する相対 速度がゼロになった。このときのばねの伸縮量の大きさは (+) [m] である。 こり、衝突したときのばねの伸縮量の大きさは

回答募集中 回答数: 0
物理 高校生

物理、ばね、つり合い この問題の問5についてです。模範解答では、つり合いの式「mg+k(a+x)-N=0」から考えて導いていたのですが、私は物体A+B(2mg)とばね定数(k=mg/a)がつり合うことを考えて「F=kx」より「2mg=k・b」という式で答えを導きました。答え... 続きを読む

con 付け, ばねを鉛直に立てて, B を水平な床面上に置いたところ, ばねが自然の長 図5(a)のように, 軽いつるまきばねの両端に同じ質量mの物体A, B を取り さより だけ縮んだ状態でAが静止した。 B 図5(b)のように, A をつり合いの位置からさらにaだけ押し下げて静かには なすと,Bが床面に静止した状態でAは鉛直方向で単振動を行った。 重力加速度 の大きさをgとする。 kazmy 自然の長さ A m Bm 問3 次の文章の空欄 それぞれの直後の { 3 4 ばね 体Aの単振動の周期は つり合いの位置 床面 このばねのばね定数は 3 4 . my (hea) mg a 図5 mg ① 2a 3 }で囲んだ選択肢のうちから一つずつ選べ。 ② (3 1 2π 4 に入れる式として最も適当なものを, ② 2 mg a 2mg a A 2g a 9 2a Ng m ③2. m (b) a である。 したがって 物 kimg a Taza Foz となる。 T = 2h ^. kw. 厚 鹿 ひこ 問4 Aが図5(a)のつり合いの位置を通過するときの速さを表す式として正しい 5mg 5 ものを、次の①~⑤のうちから一つ選べ。 = Jag mad ① vga 2 0 √2a ga 3 my = my ² a mgenue 3 Mitwir acro ² F 問5 次にAを図5(a)のつり合いの位置から押し下げる距離を6にして静かに はなした。このとき,Aの運動中にBが床面から離れないためには,b はい くら以下でなければならないか。 最も適当なものを、次の①~⑥のうちか ら一つ選べ。 b≦ 6 a zyw² n² ③ ga 2 4 √ga 2ning=nox(base) begy 『 22 5 √3ga zazlatyu 3 √3a 42a ⑤ 15 2 6⑥ 3a

回答募集中 回答数: 0