学年

教科

質問の種類

物理 高校生

なんで失うとこういう式なるのか分からないのと、電位の向きがP→Cの向きの理由がわかりません

電させる。気 Pa以下の圧 は②極 1) 物体によっ 界によって した。後に、 1-4 + Vの電圧 じる加速 14 て水平に を入れる ただし, の大き 0.26 めよ。 トン効 [26 ただし, 27 陰線の粒子は原子よりはるかに軽いので、原子の構成要素だろうと推測された。 光電効果 右図の光電管装置で, 金属板 Cへの入射光の波長を 変えて実験したところ、m〕 より長い波長の光では光 果が起こらなかっ気量光速を4m/s), ブランク 売 c 数をn's], 電子の電気量を fe[] とする。 (1) 金属板Cの仕事関数 W〔J〕 はいくらか。 の最大値K [J] はいくらか。 [ (2) 波長入[m〕 (入<入) の光を入射させた場合.Cから飛び出す電子の運動エネル (3) 波長の光を当て, PC間の電圧を0Vから少しずつ増加させたところ、電圧 この電圧 V を 入 入.h.c. 題 93 SP 問題文を読み解く。 | (1) [入 〔m〕 より長い波長の光では光電効果 が起こらなかった。」→「波長入 [m]のとき の光子のエネルギーが, 金属板の仕事関数 に相当する。」 (3) 「電圧がVo〔V〕 になったとき, 電流が流 れなくなった。」→「電子の運動エネルギー のほうが電界のする仕事の大きさよりも大 きい間は電流が流れる。」 しかし,電界が 電子にする仕事の大きさと, 電子の運動エ ネルギーが等しくな 11/12m -mv² > eVo り,さらに電子の運 動エネルギーのほう が小さくなると,電 流は流れなくなる。 センサー 142] になったとき。 流が流れなくな を用いて表せ。 また,このとき,PとCではどちらの電位が高いか。 光の粒子性と波動性 E=hv, c=và センサー 143 光電効果における, 光電子 の運動エネルギーの最大値 Ko 光子のエネルギーhv, 仕事関数Wの関係式 Ko=huW 11/12m Je -mv² < eV, P 光 PHO wwwwwwww 428429438 SP 関係するグラフや図を思い出す。 光電効果とは, 光が当たると 0 -W 金属 (1) (2) 電子の運動 エネルギー Ko 金属の限界 振動数 vo 直流電源 電子が 飛び出す 「光の振動数 v Wは金属の仕事関数 グラフは、金属から飛び出す電子 の運動エネルギーの最大値を表す。 - (J) 【解答 (1) 光の波長が入。 のときの振動数をvo [Hz] とすると, he W=hvo, c=vo より W=hv= 20 (2) 光の波長が入のときの振動数をv [Hz] とすると. hc (λ₁-2) Ko=hv-W= he he 2 20 220 (3) (2)の運動エネルギーをもった電子が電界から -eV [J] の 仕事をされて運動エネルギーをすべて失うので hc (-A) -eVo=0-Ko= Mo hc (-A) ゆえに, Vo= -(V) edda 電界は、電子にPCの向きに力を及ぼしながら、負の仕事 をしたので, Cのほうが電位が高い。 ⑥ 27 B (例 OF 30 30 粒子性と波動性 269 W (2) (

解決済み 回答数: 1
物理 高校生

問3で私の答えが5番になったのですが答えは2で、どこが違ってきているか分かりません。

- Cosy) 9 0 分 直後での運動量保 **第18問 次の文章を読み、下の問い (問1~3)に答えよ。 (配点 12 【10分 図1のように水平な床の上に半頂角0の円錐をその軸が鉛直になるように固定 した。円錐の頂点から質量mの小球が長さの軽い糸でつるされており、円錐 と接しながら角速度で等速円運動をしている。 糸は伸び縮みせず。円錐面はなめ らかである。ただし、重力加速度の大きさをgとする。 とする 0 問 等速円運動の周期はいくらか。 正しいものを、次の①~⑥のうちから一 つ選べ。 T= 1 会 20 mgsin+lucos²8) O' m (gcose + lu'sin¹0) 2x W w² (r-mlsing) = gross and rw²³-mew singsing cos 問2 小球が糸から受ける張力の大きさSはいくらか。 正しいものを次の①~8 のうちから一つ選べ。 S 2 17 W 2x 2 m (gsinf-lo cos³0) mr W=gsind cost + me ursing 4mgcost-la'sin³0) mairt (gos + sin() W² = [sing wire w f =mrw² (0) (050)-1) b = 2,415 M Tsint F Tco₂0 mg J 20 I (groso + lu² sino) cost = g U₁² 11 groso sino 問3 をいろいろ変えて小球を等速円運動させるとき、小球にはたらく垂直抗力 の大きさは図2のように変化した。 図2のc)はいくらか。 正しいものを、下 の①⑤のうちから一つ選べ。 03 m = mg sing w²=lgsing 〒53 0 mr 4 masin mg (050+ lw²siño) = [ 9 V Isin __w² T mut sing gcos T mg sine + N mg coso 2 QF mg 1030 Im CO₂O mg Burg mycose + ml wsing T T my co me sinfu = ((stein² ou ² ) 9 Icos my cosp 図2 Ex mg = m + cos w² g r como e COD w² mgsing N mesingumasing macoso I + me sinow sint ex=lsing gsin 1 Tsing BSAJN + == T-mg cose my 00 Aug Tcose + Nsin0 = mg) Ttanf Too 30 My he ca = 3 mrw² mg _ru tand: g w² wid. ₂N

解決済み 回答数: 1
物理 高校生

(2)なぜ、これは強め合いの条件を使うんですか? 優しい方どなたか教えて欲しいです

る。 少の薄 RU 真 どのよ 943 ラス 目の可視 94 光 装置で、光源から波長の光を入射させて実験をし 299 ヤングの実験 右図のようなヤングの実験の 点を原点O, スクリーンと複スリットの距離をL た。 S, S, がら等距離の位置にあるスクリーン上の (1) 屈折率n, 厚さの物質Aをスリット S, の前に置いた。 このとき, 光は物質に対 してほぼ垂直に物質を横切るものとして, 単スリットと複スリットの間で生じる光路 = dはLに比べて十分小さいものとする。 差を求めよ。 (1)で、もともと原点Oにあった縞模様はどちらにいくら移動したか。 (3)物質Aを取り除き,スリット So を図の矢印の向き(下向き)にゆっくりと動かした。 物質を取り除いた後,干渉縞の明暗が初めて反転したときのS,S,-S,S2 はいくらか。 5番目と だけずれ | Step ただし、 94 3 解答編 p.163~166 (1) id, 0, を用いて表せ。 次に、図2のように波長がわずかに異なる。 波長の光を当てると, その1次の回折光を同じ 源 201 300 回折格子 格子定数d の回折格子に,波長入の単色 光を当ててスクリーンに向かわせると,図1のようにスク リーン上で明点が観察された。 図2のように、回折格子に 入射する光の進行方向と回折格子に立てた法線とのなす角 回折光と回折格子に立てた法線のなす角をβとする。 ここでは,α<βの場合を考え, 反射面に入射した光は, 反射面を中心とした素元波を発生させて、 様々な向きに広 がって進んでいくと考えてよいものとする。 (1) 経路 AD, BC をそれぞれ求めよ。 (2) 隣り合う回折光が強め合うときの条件式を書け。 図2 (3) 入射角α = α′で入射し、同じ角度で反射した光 (0次) に対して,最も近い明線の回折光 (1次) がβ=β' を満たすとき,角α'と'の間に成り 立つ式を求めよ。 の方向で観測するためには,回折格子をゆだ け傾ける必要があった。 (2) 経路の差P'A+ AQ' をd, p, 0, を用いて表 せ。 (3) - d, 0, を用いて表せ。 ただし, in cosp=1 と近似せよ。 である。 1 A 入射光 d S 回折格子 6801 回折格子図1は、格子定数dの回折格子に垂直に波長入の光を当て,入射光と の角をなす方向で干渉が起こることを説明した図である。このとき, 1次の回折光は 0 = 0, の方向で干渉を起こした。 PLA A 10 1 図1 図1 スクリーン 回折光 C D B 101 図2 (2) ASP'=, ∠ASQ'=0,-p 基礎 物理 23 その回折と干渉 185

解決済み 回答数: 1
物理 高校生

青線の部分意味がわかりません。どういう基準で符号を変えているのか?なんでイコールになるのかわかりません。

AU 熱量を加えた K)か の気体の る。 AU を加えたとこ エネルギーの 0 積が増加し こと気体に加 0 co U -3.0x 仕事をする 上がった 気体 例題42 下図のように、物質量が一定の理想気体をA→B→C→A と状態変化させた B→C は等温変化であり, A での絶対温度は300K であった。 (1) B での絶対温度 TB [K] と C での体積 Vcm〕 を求め 715 B (2) A→Bの過程で,気体が吸収した熱量は QB=9.0×10° [J] であった。 気体が外部にした仕事 WAB [J] はいくらか。 また, 気体の内部エネルギーの 変化AUAB 〔J〕はいくらか。 13Cの過程で,気体が外部にした仕事はWic = 9.9×10'[J]であった。気体の 内部エネルギーの変化AUBC 〔J〕 はいくらか。 また,気体が吸収した熱量 Qwe [J] pV=一定などを用いて求める。 はいくらか。 (4) GAの過程で、気体が外部にした仕事 Wea [J] はいくらか。 また,気体の内 部エネルギーの変化 AUc 〔J〕, および気体が放出した熱量 Qca〔J〕 はいくらか。 CA SP 気体が状態変化したときのか,V,Tの求め方 ボイル・シャルルの法則 PV 定理想気体の状態方程式がV=nRT, = T T' センサー 55 ボイル・シャルルの法則 pV_p'V' T T p 〔Pa〕* 3.0 X 105 SP 気体が状態変化したときのQ, W, AU の求め方 状態変化の種類によって成り立つ関係式が異なるので, 注目する状態変化が定積 変化, 定圧変化, 等温変化, 断熱変化のどれかを確認し, まとめの式 (p.119) を用いる。 -=一定 センサー 56 定積変化のとき, W = 0 1.0×105 ●センサー 57 等温変化のとき, AU=0 A₁ C 0 0.030 Vc V[m³] 【センサー 58 定圧変化のとき,W=pAV (1) ボイル・シャルルの法則より (1.0×10)×0.030_ (3.0×10) x 0.030__ (1.0×10 ) × Vo 300 TB To また、B→Cの過程は等温変化だから, TB = Tc ゆえに, TB = 9.0×102〔K〕,Vc = 9.0×10^2[m²]| (2) 定積変化だから, WAB = 0 [J] である。 熱力学第1法則より, AUAB=QAB-WAB=QAB-0=9.0×10°〔J〕 (3) 等温変化だから,4U.Bc=0[J] である。 熱力学第1法則より, QBC=AUBC+WBC=0+WBc = 9.9×10°〔J〕 (4) C→Aの過程で気体が外部にした仕事は, WcA=pAV=1.0 × 10 x (0.030-0.090) = -6.0×10°[J] また, A→B, CA の過程での温度変化を, それぞれATAB. ATCA とするとATeATAB 気体の内部エネルギーの変化は温変化に比例するので, そ の比例定数をすると. AUcA=kATcA=-KATAB = -4UAB = -9.0×10°[J]| 熱力学第1法則より, 気体に加えられた熱量 Q'cA [J] は, Q'CA=4UcA+WcA= -9.0×10°-6.0×10°= -1.5×10'[J] よって, Qca = 1.5×10'〔J〕 14 14 気体の状態変化 121

解決済み 回答数: 1