学年

教科

質問の種類

物理 高校生

(エ)で「転倒し始める時はT'=0、あるいはN'=0」とあってT'=0としてるんですけど(カ)のT''って0じゃないのですか? (出典:難問題の系統とその解き方)

例題1 剛体のつりあい ① 次の文中の ] に適する数値(負でない整数) をそれぞれ記入せよ。 図のように、直方体の一様な物体Aが, 水平と45°の傾斜をもつ地盤Bの上に、質 量の無視できるロープCによって取りつ けられた構造物がある。物体Aと地盤B とは、接触しているだけである。 物体Aの質量:m=1.0×10° 〔kg〕, 重力 加速度の大きさ:g=10[m/s²], 物体Aと地盤Bとの間の静止摩擦係 数および動摩擦係数:μ=1/3, 2の値:1.4とし,ロープCは十分強く, 伸び縮みしないものとする。 (1) 静止しているとき, ロープCの張力は (ア)[ 盤Bが物体Aに作用する抗力の大きさは (イ) × 10°Nであり、地 × 10°Nである。 (2) 地震によって,次第に強くなる上下動(鉛直方向の動き)が起こ り,ある加速度が物体Aにはたらいたら,物体Aが転倒(物体Aが 地盤Bに対して,すべり・離れなどの動きを起こし、回転して倒れ る状態)を起こし始めた。 その加速度の大きさは (ウ) m/s' であ り,ロープCの張力は (エ)[ × 10°Nである。 (3) 地震によって、次第に強くなる水平動が起こり、ある加速度が 物体Aにはたらいたら, 物体Aが転倒 ((2)参照)を起こし始めた。 その加速度の大きさは (オ) m/s' であり, ロープCの張力は (カ) ×10°Nである。 〔東京理科大・改] 考え方の キホン y A hor 4m 45° + 2m. C B 力学において最も重要なことは、力を正しく見つけることである。 そして力がわかれば,それらを互いに垂直な方向に分解し、力のつ りあいの式を2つつくる。次に,適当な点のまわりの力のモーメントのつりあい この式をつくる。 あとは, 以上の3つの連立方程式を解くだけである。なお, 静止 摩擦力はつねに最大静止摩擦力が働いているとは限らないので, はじめからその 値をμN とおいてはいけない。 まず, 未知数として文字で表し (例えばF), つ りあいの式を解いて F の値を求めてから, FUN の条件を課せばよい。 また, 力のモーメントのつりあいの式は, 任意の点のまわりのモーメントで考えてよい が,なるべく計算が簡単になるような点を選べばよい。 すなわち、ある力の作用 線上の点を ントになるので計算が楽である。 水平面 カ学 2 3 波動

回答募集中 回答数: 0
物理 高校生

(2)(3)で地震の縦揺れ、横揺れの慣性力を考慮してると思うのですが地震の慣性力の向きが(2)だと上向き、(3)なら左向きだとなぜ分かるのですか? (出典:難問題の系統とその解き方)

例題1 剛体のつりあい ① 次の文中の ] に適する数値(負でない整数) をそれぞれ記入せよ。 図のように、直方体の一様な物体Aが, 水平と45°の傾斜をもつ地盤Bの上に、質 量の無視できるロープCによって取りつ けられた構造物がある。物体Aと地盤B とは、接触しているだけである。 物体Aの質量:m=1.0×10° 〔kg〕, 重力 加速度の大きさ:g=10[m/s²], 物体Aと地盤Bとの間の静止摩擦係 数および動摩擦係数:μ=1/3, 2の値:1.4とし,ロープCは十分強く, 伸び縮みしないものとする。 (1) 静止しているとき, ロープCの張力は (ア)[ 盤Bが物体Aに作用する抗力の大きさは (イ) × 10°Nであり、地 × 10°Nである。 (2) 地震によって,次第に強くなる上下動(鉛直方向の動き)が起こ り,ある加速度が物体Aにはたらいたら,物体Aが転倒(物体Aが 地盤Bに対して,すべり・離れなどの動きを起こし、回転して倒れ る状態)を起こし始めた。 その加速度の大きさは (ウ) m/s' であ り,ロープCの張力は (エ)[ × 10°Nである。 (3) 地震によって、次第に強くなる水平動が起こり、ある加速度が 物体Aにはたらいたら, 物体Aが転倒 ((2)参照)を起こし始めた。 その加速度の大きさは (オ) m/s' であり, ロープCの張力は (カ) ×10°Nである。 〔東京理科大・改] 考え方の キホン y A hor 4m 45° + 2m. C B 力学において最も重要なことは、力を正しく見つけることである。 そして力がわかれば,それらを互いに垂直な方向に分解し、力のつ りあいの式を2つつくる。次に,適当な点のまわりの力のモーメントのつりあい この式をつくる。 あとは, 以上の3つの連立方程式を解くだけである。なお, 静止 摩擦力はつねに最大静止摩擦力が働いているとは限らないので, はじめからその 値をμN とおいてはいけない。 まず, 未知数として文字で表し (例えばF), つ りあいの式を解いて F の値を求めてから, FUN の条件を課せばよい。 また, 力のモーメントのつりあいの式は, 任意の点のまわりのモーメントで考えてよい が,なるべく計算が簡単になるような点を選べばよい。 すなわち、ある力の作用 線上の点を ントになるので計算が楽である。 水平面 カ学 2 3 波動

解決済み 回答数: 1
物理 高校生

(5)解説で「⑤式において、θ=135°にもかかわらずΔλ≒0となるのは〜」とあるのですが、なんでΔλが0に近づくとX線強度が跳ね上がるのですか? (出典:難問題の系統とその解き方)

(i) 電圧 くなり ・飛び のよう たの) 傾きこん Wo h ら, 例題 コンプトン効果 電子の質量をm, プランク定数をん, 光速をcとして、以下の設問 に答えよ。なお, (1), (2) 以外は解法も簡潔に記すこと。 [A] 1923年, コンプトンは波長入のX線を金属薄膜に照射し、散乱さ れたX線の強度の角度分布を測定した。その結果の一部を模式的 に示したのが図1であり,X線が散乱されてもとの波長より長く なっている成分のあることが観測されている。 コンプトンはこの現象を,X線を粒子と考え、この粒子すなわ 光子と静止している電子との衝突と考えて解明した。 図1(a) X線強度 (X線の散乱角80°) 入 X線波長 図 1 (b) X線強度 (X線の散乱角0=135°) M 入。 入 X線波長 図2 入射光子 (19) O- 散乱光子 (1) O 反跳電子 (0) (1) 光子のエネルギーEと運動量P を,h, c, およびX線の波長入のう ち必要なものを用いて, それぞれ表せ。 (1-cos 0) を導け。 ただし、 (2) 散乱前後の光子の波長をそれぞれ入, 入] とし, 反跳電子の速さをか とし,入射方向に対するそれぞれの散乱角を,図2のように0.④と する。このとき,入射方向とそれに垂直な方向の運動量保存則を それぞれ記し,さらに、エネルギー保存則を記せ。 h (3) 41 (=A₁-A)=- 4 « 1 として、 do mc 近似を用いること。 (4) 反跳電子の運動エネルギーの最大値T maxをm,hcおよびふを用 いて表せ。 (50=135°の図1(b) では, 波長入。 付近にもピークが見られる。波長の ピークが光子と金属中の電子との散乱によるのなら、山のピーク は光子と何との散乱と考えられるか。 理由も述べよ。 [B] 一方、電子の波動性については, 1924年ド・ブロイが予想し, 1927年デヴィッスンとジャーマーが検証した。 彼らは格子間隔dの 2-1 原子の構造 263

解決済み 回答数: 1
物理 高校生

(シ)で直列(問題の図4)と並列(問題の図5)の時のコンデンサーに蓄えるエネルギーを比較しているのですが(シ)の解説で0<ω^2LC<2の時とあるのですがどうしてこの範囲になるのか分かりません。 ω^2LCが2より大きい値を取った時は考えないのでしょうか? 出典:難問題の... 続きを読む

Chapter 1 電磁気 Section 4 交流と荷電粒子の運動 192 例題 35 交流回路② 以下の空欄(ア)~(シ)にあてはまる式または語句を解答用紙の該当す る欄に記入せよ。 また, 空欄(a), (b)にあてはまる答えを図3から選び、 その番号を解答用紙の該当する欄に記入せよ。 る。したがって、同じ電圧振幅 V を発生する交流電源に接続するとき, コンデンサーが蓄えるエネルギーの最大値は直列接続の場合( [J] であり, 並列接続の場合(ク) 〔J〕 である。 また, コイルが蓄え るエネルギーの最大値は、 直列接続の場合は) [J] であり,並列 接続の場合は) [J] である。 並列接続の場合, コンデンサーが蓄 えるエネルギーの最大値とコイルが蓄えるエネルギーの最大値が等 しくなるのはω=)〔rad/s〕のときである。 コンデンサーから放射される電磁波の強さは, コンデンサーが蓄積 するエネルギーに比例するとしよう。 交流電圧源の電圧振幅 Vo を一 として、交流電圧の角振動数を変えて電磁波の放射エネルギーを大 きくしようとするとき, コイルとコンデンサーの直列接続と並列接続 とを比較するとシン) 接続のほうがより強く電磁波を放射すると考 えられる。 図1に示すように, 電気容量がC〔F〕] のコンデンサーを角振動数ω [ rad/s ] の交流電圧を発生する電圧源に接続する。 回路には時間を [s] として,図2に示すようなIo cos wt 〔A〕 の交流電流が図1の矢印の 向きを正として流れる。 t=0s でコンデンサーの電圧は0Vで,コンテ ンサーの蓄える電荷はOCであった。 交流電流が流れることによって 時刻に図1のコンデンサー上側の極板が蓄える電荷は) [C]で あり、コンデンサー両端の電圧は() [V] である。この交流電圧 はコンデンサーの極板間に,時間的に変動する電界を作る。 変動する電界付近には, 変動する磁界が発生する。 図2の0<t< / 200の間では,コンデンサーの極板間の電界の向きは図3の(a) の向きである。この向きの電界の時間変化率は0<t < π/20 の間で正 であり、この間に変動する電界は、コンデンサーの上側極板に流れ込 む電流が,そのままコンデンサーの極板間を流れるものと考えた場合 に発生する磁界と,同じ向きに磁界を発生する。 したがって,0<t <π/20の間にコンデンサー周囲に発生する磁界は図3(b)の向 きである。 この磁界の周りには、変動する電界がさらに発生する。 こ うして、コンデンサーの周りには、次々と変動する磁界と電界が発生 し、周りの空間に伝えられる。 これが電磁波である。 光の速さをc[m/ s] とすると,このコンデンサーから放射された電磁波の波長は(ウ) [m〕 と計算される。 コンデンサーから電磁波を発生させるとき, コンデンサーとコイル を接続した回路がよく用いられる。 電気容量C [F] のコンデンサーと 自己インダクタンスL [H] のコイルを,図4のように直列接続する場 合と,図5のように並列接続する場合を比較しよう。図4の直列回路 I cos at 〔A〕 の交流電流が流れるとき, 電圧源が発生する電圧の振 幅は国〔V〕である。 一方, 図5の並列回路のコイルとコンデンサー Vosin at 〔V〕 の電圧を加える場合には, コンデンサーに流れる電流 の振幅は(オ) [A], コイルに流れる電流の振幅はカ) [A] であ 図 1 考え方の キホン 電流 415 図4 電流 [A] Io 0 -10 2ω ② 3 w2w 図2 図5 2x 時間 t(s) コンデンサー -0 電流 図3 (同志社大) 交流で電圧や電流を求める場合、 普通は,振幅(最大値) と位相を 別々に処理すればよい。 振幅はオームの法則から求め、位相はπ/2 だけ進むとか遅れるとかを判断し, cot+π/2とかwt-π/2とかとすればよい。ただ この問題では、設問の順序からみて、 微分や積分を用いて解答するのが、出題者 の意図であろう。 1-4 交流と荷電粒子の運動 電磁気 193

解決済み 回答数: 1
物理 高校生

僕のやり方ではダメなのでしょうか。。。

発展例題5 斜面への斜方投射 物理 図のように, 傾斜角 0の斜面上の点Oから, 斜面と垂直 0 向きに小球を初速v で投げ出したところ、小球は斜面上の 点Pに落下した。 重力加速度の大きさをgとして,次の各問中 に答えよ。 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 解説 OP (1) 小球を投げ出してから, 斜面から最もはなれるまでの時間を求めよ。 間 (1) (2) OP 間の距離を求めよ。 14! (S) (1) 斜面に平行な方向 にx軸、垂直な方向に y軸をとる (図)。重力 加速度x成分,y成 分は,それぞれ次のよ うに表される。 x成分: gsine y成分:-gcose 方向の運動に着目する。 小球が斜面から最も はなれるとき, v方向の速度成分vy が0となる。 求める時間をとすると, vyno-gcosd・tの 式から, -gcoso BA DZ gsin O 0 P Vo 0=vo-gcoset t₁ =- gcoso (2) Py=0 の点であり, 落下するまでの時間 を友として, y = vot-12gcos0.2の式から、 1 0=vot₂-9 cose.t₂² 2 1 0=t₂ (vog cost-t₂) 0=1200 rocosota) 2 200 20から, 発展問題 48,52 t₂ = x= Vo ら, OP間の距離xは, =1/29s takl g cosec(s) (1) x 方向の運動に着目すると, x= -1/21gsino-t2 か sine.t² 295 gsino.to/1/29sino (1 = sinO・ 200 gcoso ) 2v2" tan0 gcoso Q Point y方向の等加速度直線運動は,折り 返し地点の前後で対称である。 y=0 から、方 向の最高点に達するまでの時間と、最高点から 再び y=0 に達するまでの時間は等しく, t=2, としてを求めることもできる。

解決済み 回答数: 1