学年

教科

質問の種類

物理 高校生

教えて欲しいです。 電磁気の分野です。 1、2枚目は問題で、3枚目は解凍群です。

【4】 導 次の文章の空欄にあてはまる最も適した数式または語句を解答群の中から選びなさい。 図1のように、質量m,長さ1の導体棒ab の両端に質量の無視できる導線をつなぎ、固定さ れた水平な絶縁棒上の点c, 点dに巻きつけ, 導体棒ab が水平になるようにつるす。点cと点 dの間隔を1とし、導線 ac, bd の長さをともにする。また,aの最下点を原点Oとして図1 のように水平方向にx, y 軸を,鉛直方向に軸をとる。この装置をy軸の負の方向から見た様 子を図2に示す。 さらに、 図1の上部 線 ar か にあるように、抵抗値 R の抵抗,起電 力Eの電池、スイッチSからなる回路 を導線につなげる。 また、 図1,2のよ うに導線が鉛直方向となす角を0と し、矢印の向きを正とする。以下では 重力加速度の大きさをgとし,導体棒 と導線の抵抗 および回路abdc におけ る自己誘導は無視する。 また、導線は たるまないとし、絶縁棒と導体棒の太 さは無視できるものとする。 S p TR 9 E ZA 8 B 0 -a x 図1 d ZA r 0 図2 B a x スイッチSをq側に接続し,図1,2のように, z方向の正の向きに磁束密度の大きさがBの 一様な磁場 (磁界)をかけると、導線が鉛直方向と角度をなす状態で導体棒ab を静止させるこ とができた。このとき, 導体棒には大きさ (1)の一定の電流が流れるため、 大きさ (2)の力がx軸と平行に,x軸の (3) の向きにはたらく。 導体棒にはたらく力のつりあ いにより, はtando = (4)をみたす。

解決済み 回答数: 1
物理 高校生

【高校物理】電源のした仕事を考える時、Q2を考えないのは何故でしょうか?教えてくださいm(_ _)m

問5-6 右ページの図のような回路がある。 はじめ, どのコンデンサーにも電荷が蓄えら れていない。このとき、 次の問いに答えよ。 (1) スイッチをaにつないでから十分に時間が経過した。 この間に回路で発生し たジュール熱はいくらか。 (2) その後、スイッチをbにつなぎ替えて十分に時間が経過した。この間に回路 で発生したジュール熱はいくらか。 電源のした仕事=静電エネルギーの変化+発生したジュール熱 の関係を使って計算していきましょう。 解きかた (1)はじめ、どのコンデンサーにも電荷が蓄えられていないので静電エネル ギーは0ですね。コンデンサー C, とコンデンサー C2の電圧を V1, V2と すると 電圧1周0ルールより E = V1 + V2 …① 蓄えられる電気量は Q1 = CV1 Q2=2CV2 ③ 独立部分の電気量の総和は不変なので、②③ より 0+0= - CV + 2CV2 0=-V1 +2V2 ...... ④ ①+④ より E=3V2 ゆえに Vi = 1/2/3 EP2= 2 12=1/3 静電エネルギーはそれぞれ -E U₁ = CV² = 2 CE² 1 U2=2CV2²=CE 1 仕事をしています 9 電源はQ=CV の電気量をEだけ持ち上げたので、電源のした仕事は Q.E=C1/23E・E=1/23CE2 よって、回路で発生したジュール熱をJとすると 3 9 CE²= CE² + CE²+ 1 9 ゆえに J= J₁ = CE² ... 答 Q2は?

解決済み 回答数: 1
物理 高校生

これの(7)なんですけど!なぜRは一定ってこの文から決めれるんですか?別に送電線を変えればRは変えれることないですか?

136 〈交流の送電〉 交流電圧が送電に広く用いられるのは, 変圧器によって交 ao 鉄心 流電圧を容易に上げ下げできるためである。 ここでは,電力 損失のない理想的な変圧器を考える。 図1のように, 鉄心に 2つのコイル (1次コイルの巻数がn, 2次コイルの巻数が n)を巻く。このとき, 1次コイルと2次コイルの間の相互イ ンダクタンスはMであった。 U1 b 11 112 1次コイル 図 1 2次コイル ⊿の変化するとして、次の設問に答えよ。 なお、設問(1)~(4)は n1, nz, M, ⊿t is ⊿の 時間 4tの間に1次コイルに流れる電流 in が ⊿i だけ変化したとき, 鉄心に生じる磁束が 中から必要な文字を用いて答えよ。 1次コイルに生じる誘導起電力の大きさを求めよ。 (2)2次コイルに生じる誘導起電力をv2とする。このときの比の大きさ n2 を用いて表せ。 〔A〕 V₂ [V] V2 をい V₁ (3) 2次コイルに生じる誘 導起電力 (端子 dを基準 とした端子 cの電位) v2 をMを含む式で表せ。 図 (4) 1次コイルの電流を 図2のように変化させた 2 10 5050 0 1 2 3 4 5 6 -5 t(s) S 10 0 1 2 3 4 5 6 7 t〔s] 図2 -15 図3 ときの時間変化のようすを図3に図示せよ。ただし,電流żの向きは,図1に示した 矢印の向きを正とし, M=5H (ヘンリー) であるとする。 図4のように,発電所 発電所 から送りだされた電圧 V1, 電流 L, 電力Pの交 流は,変圧器Aによって 電圧 V2,電流Izの交流 に変えられ,抵抗Rの送 電線で消費地近くの変圧 交流発電機 変電所 変電所 送電線 12 鉄心 鉄心 消費地 変圧器 A 抵抗 R V2 変圧器 B 抵抗 1次コイル 2次コイル 1次コイル 2次コイル 図 4 器Bに送られる。 送電線の終端の電圧は V3 である。 ただし, 電圧 V1, V2, V3, 電流 I, Iz は実効値である。また,ここで,電力は1周期についての平均の電力であり、1次側,2次 側ともに電圧と電流の実効値の積で表されるとする。 また, 変圧器 A, B はともに電力損失 のない理想的な変圧器である。 (5) 電圧 V3 を P, V2, R を用いて表せ。 (6)発電所から送りだされた電力Pと送電線の終端での電力P' の比,すなわち, e=- 送電効率という。送電効率e を P, Vz, R を用いて表せ。 送電効率を高くするためにはどうすればよいと考えられるか。簡潔に述べよ。 を P [九州工大 改〕

回答募集中 回答数: 0
物理 高校生

画像の問題の答えを教えてください!!

底面積がS[m²), 高さがL(m)の中空の円柱容器に物質を入れて水に浮かべ、浮力の 実験を行った。 以下, 円柱容器に入れた物質も含めて円柱とよぶ。 円柱の運動は鉛直方 向に限られるものとする。 水の密度は深さによらず一定で、円柱の運動にともなう水か らの抵抗, 水面の変化および円柱容器自身の質量は無視する。 ここで水の密度を Po [kg/m3], 重力加速度の大きさをg[m/s2] として次の問いに答えよ。 水面 d Po 図 1 S Po 図2 Po P1 図3 (1) 円柱の下部に密度が1〔kg/m²(ただし, Pipo) の物質を高さ L [m] だけ入れて 水に浮かべると、 図1のように長さ d [m] だけ水面上に出て静止した。 このとき円柱 が受ける重力の大きさはア [N] である。 水中の物体は,その物体が押しのけた体 積の水が受ける重力の大きさに等しい浮力を鉛直上向きに受けるので、円柱が受ける 浮力の大きさはイ [N] となる。 イに入る適切な文字式を下の解答群の中から1つ選べ。 ③SLg ア ア :posLg ②poLig イ :D PSLg ② pSL-dg 3 PS(L-L₁)g PiSL₁g ④ poS(L-L-dg+pSLng (2) (1)における長さ d [m] を求めよ。 (3) 円柱が静止した状態で、 図2に示すように上から力を加え, 長さ x[m] だけ沈め た。 ただし, xはdに比べて十分小さいとする。 このとき円柱が受ける重力と浮力の 力の大きさ F [N] を求めよ。 (4) 円柱の残りの空間を密度が2〔kg/m3] (ただし, P1 P2) の物質で完全に満たして水 に入れた。 このとき, 図3のように円柱の上面が水面とちょうど同じ位置になって静 止したとする。 物質の密度 P2 [kg/m3] を求めよ。

回答募集中 回答数: 0
物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
物理 高校生

この問題の(4)のことで緑線で囲った部分の言っていることがよく分からないので教えてほしいです。

70. <ピストンで封じられた気体〉思考 図1のように,摩擦なしに動くピストンを備 えた容器が鉛直に立っており,その中に単原子 分子の理想気体が閉じこめられている。容器は 断面積Sの部分と断面積 2S の部分からなって いる。ピストンの質量は無視できるが,その上 に一様な密度の液体がたまっており,つりあい が保たれている。 気体はヒーターを用いて加熱 することができ,気体と容器壁およびピストン との間の熱の移動は無視できる。 真空 真空 真空 2S S 2 12 液体 液体 h 2 液体 ピストン 気体 h+x 気体 h 気体 2 ヒーター 図 1 図2 図3 また,気体の重さ, ヒーターの体積, 液体と容器壁との摩擦や液体の蒸発は無視でき,液体 より上の部分は圧力0の真空とする。 重力加速度の大きさをgとする。 次の問いに答えよ。 〔A〕 まず,気体、液体ともに断面積Sの部分にあるときを考える。 このときの液体部分の 高さは今である。 2 h (1)初め,気体部分の高さは12,圧力はP。であった。液体の密度を求めよ。 (2) 気体を加熱して,気体部分の高さを1からんまでゆっくりと増加させた(図2)。この 間に気体がした仕事を求めよ。 (3)この間に気体が吸収した熱量を求めよ。 〔B〕 気体部分の高さがんのとき, 液体の表面は断面積 2Sの部分との境界にあった(図2)。 このときの気体の温度は T であった。 さらに, ゆっくりと気体を加熱して, 気体部分の 高さがん+x となった場合について考える (図3)。 1 x>0では,液体部分の高さが小さくなることにより, 気体の圧力が減少した。 気体の 圧力Pを, xを含んだ式で表せ。 (2)x>0では,加熱しているにもかかわらず,気体の温度はTより下がった。 気体の温 度Tを x を含んだ式で表せ。 気体部分の高さがんからん+xに変化する間に, 気体がした仕事 W を求めよ。 ④ 気体部分の高さがある高さん+X に達すると, ピストンをさらに上昇させるために必 V要な熱量が0になり, xがXをこえるとピストンは一気に浮上してしまった。Xを求 めよ。 [11 東京大〕

解決済み 回答数: 1
物理 高校生

(2)なぜ(−L2)なるのですか?

実戦 基礎問 58 顕微鏡の原理 レンズ1 レンズ2 像2の位置 物体の位置 像1の位置 L₁ La "fi" fi た f2 図は, 焦点距離がとの 2つの凸レンズを組み合わせた 顕微鏡の原理を示している。 物 体はレンズ1の焦点の外側に置 かれている。 したがって, 物体 と反対側に物体の像 (像1とする) ができる。 レンズ1から像1までの距離 とするとこのときレンズ1の倍率は,レンズの公式を使って, fu, L を用いて表せば (1) となる。 次に,像1がレンズ2の焦点の内側に位置す るようにレンズ2を配置する。 すると,拡大された像 (像2 とする) が見え る。 レンズ2から像2までの距離をLzとする。 fz, L2 を用いると,像2の 大きさは像1の (2) 倍となる。 最終的に物体の像は, (3)倍に拡大され、 その像は物体に対して倒立している。 もしチェ=5.0[mm], L=150[mm], 2=10[mm], L2=250 [mm] ならば、この顕微鏡の倍率はおよそ (4) 倍 になる。また,この顕微鏡の鏡筒の長さ(レンズ1とレンズ2の間の距離) は (5) ] [mm] である。 (中央大) ●組合せレンズ 顕微鏡や天体望遠鏡のように, 複数のレンズ 精講 を組み合わせることによって, 小さな物体や遠くの物体を拡大 して見ることができる。 (例) 2つのレンズを距離だけ離して置いた場合 【参考 図の よる 第2 し、 第 1- ( 第1レンズによる像を,第2レンズに対する物体として、レンズの公式 を用いればよい。 第2レンズ 第1レンズによる像の, 第1 レンズとの距離を61 とすると, 第2レンズに対する物体の,第 第1レンズ a as ·b₁₁ -ar 2レンズとの距離は a2= l-b, 物体 第1レンズの像 第2レンズ である。 ここで,第1レンズに 第2レンズの物体 の像 よる像が実像のときは61>0, 虚像のときは 6,<0 である。第2レンズに 第2レンズとの距離を62, 第2レンズの焦点距離

回答募集中 回答数: 0