学年

教科

質問の種類

物理 高校生

(1)は自力でやって見たんですけど(2.3)でつまづいてしまいました。ワーク見てもさっぱりですよろしくお願い致します🙏

次の文を読み、問い(問1~3)の答えとして最も適当なものを、それぞれの解 群から一つずつ選べ。 [解答番号 11 ~ 13 [] 図のように, なめらかに動く軽いピストンのついた。 断面積 0.030m²の円筒 容器がある。 円筒容器の底には温度調節器がついており、 円筒容器内に熱を与 えることができる。 ただし, 円筒容器の内と外との間で熱のやりとりはないも のとする。 この容器内に、 温度 0℃, 圧力 1.0×10 Paの理想気体 0.50mol を封じ たところ、 体積は1.13×10-2m² であった。 いま。 この気体の圧力を一定に保ちながら, 温度調節器によって, 気体に30 OJの熱量を与えたところ、 気体の温度は上昇し, ピストンが 0.040m移動した。 (m²) ① 40 ② 80 ③ 120 180 ⑤ 300 (Pa) (m) W = 5 問1 気体が外部にした仕事[J]はいくらか。 + W = PAV W=PAV 200 ⑥ 12102 [J] =120 ① 40 ② 80 ③ 120 ④ 180 (5) 200 ⑥ 300 10×10×0.0310×0.040 問2 気体の内部エネルギーの増加[J]はいくらか。 12 円筒容器 ピストン 温度調節器 問3 気体の温度の上昇 [℃]はいくらか。ただし、 気体の内部エネルギーの式を 用いてよい。 その際、 R-8.3J/mol・K を使うこと。 13 [C] [℃] ① 10 ② 15 ③ 21 ④ 25 ⑤ 29 ⑥ 33

回答募集中 回答数: 0
物理 高校生

0.29g減少するのにそのうち6×10-3gしかα粒子が出ない計算になっているのですが、残りのgは何に変わってしまうのですか?

Cu 者 進入 の する 検 ここがポイント 342 α 崩壊では He の原子核 (a 粒子) を放出する。 崩壊によってポロニウム原子核の数は減少し,残っ 「」に従う。ポロニウムが1個崩壊するたびにœ粒子を1個放出 た原子核の数は崩壊の式「N No (1) ² するので,放出したæ粒子の数は崩壊したポロニウムの数と等しい。原子核の質量は近似的に質量数 に比例する。 崩壊の式の の値が整数ではないときは,両辺の対数をとるとよい。 T 解答 (1)α 崩壊は,原子核が He 原子核を放出するので, 原子番号Zは2,質 量数Aは -4 だけ変化する。 よって 質量数 A=210-4=206 原子番号 Z=84-282" (2) 崩壊の式「N=(1/2) 17」において、原子核の数は質量に比例する。 初めの質量 Mo (= 1.0g), t日後の質量を M〔g〕 とすると 6=(1/2) ² = M₁ ( 12 ) + ² N M No Mo ① t = 69 日 のとき M = 1.0× M=Mol 69 138 1x (12/1)-(2/2) - // 4 m 210 0.29 276 138 √2 2 2 t=276日のとき M = 1.0× 0x (-1/2) =(1/2)=14=0.25g .≒ 0.71g 69日間に崩壊した 288Po 原子核の質量は 1.0-0.71=0.29g 28 Po 原子核と α 粒子 (He 原子核) の質量比は原子核の質量数の比 210:4としてよく崩壊した 288Po 原子核数は放出したα粒子数と等 しいので, 求める質量をm〔g〕 とすると よってm=0.29× -≒6×10-3g 4 210 原子番号 82は鉛Pbなの で,このα崩壊は 2PO206Pb+¹He という反応式で表される。 2 厳密には陽子と中性子の 質量に微妙な差があるが, 本 問ではこの差を無視している ので,質量比=核子数の比= 質量数の比としてよい。

回答募集中 回答数: 0
物理 高校生

(6)の高温熱源、低温熱源がどうのこうの というのがわかりません。

容器内の気体の圧力 P, 〔Pa] を求めよ。 3) 容器内の気体の温度 T [K] を求めよ。 この変化における容器内の気体の圧力P [Pa〕 と体積V[m²] の関係を表すグラフをかけ。 ただし, P を用いてい 15) この変化で気体が外部にした仕事〔J〕 を求めよ。 (6) この変化で気体が温度調節器から受け取った熱量Q〔J〕を求め 68.〈気体の状態変化と熱効率〉 (6) [A] 理想気体では物質量が同じであれば, 内部エネルギーは温度 で決まる量であり, 圧力や体積が異なっていても温度の等しい状 態の内部エネルギーは同一である。 このことから, 1molの理想 気体に対するか-V図(図1)に示す状態a (温度 T [K]) から状態 b (温度 T'[K]) への内部エネルギーの変化 4Uab 〔J〕 は,定積モ ル比熱Cv 〔J/(mol・K)] を用いて AUab=Cv(T-T) [9] 気体分子の運動と状態変化 51 68 p 0 数研出版 と表すことができる。 (1) 図1に示す状態 a, b とは別の状態 c (状態aと同じ体積をもち,状態bと同じ温度で ある状態)を考えることで ① 式を導け。 1/3 [B] 理想気体1mol の状態を図2のようにA→B→C→Aと変化 させる。 それぞれの状態変化の過程では, A B 外部との間で熱の出入りがないものとする B→C: 圧力を一定に保つ C→A:体積を一定に保つ ように変化させる。 状態 A, B, Cの圧力, 体積, 温度をそれぞれ (p₁ (Pa), V₁ (m³), TA (K)), (P2 (Pa), V₂ [m³), TB (K)), 〔Pa], V1 [m²], Tc 〔K〕) とする。 また, 定積モル比熱をCv 〔J/(mol・K)] 定圧モル比熱 Cp を Cp [J/(mol・K)],比熱比を y = v 気体定数を R [J/ (mol・K)] で表す。 p P₁ P₂ 図 1 0 C 等温線 V₁ 図2 B (2) 過程A→Bで気体が外部からされる仕事 WAB 〔J〕 を ① 式を用いて求め, その答えを Cv. Cp, Ta, TB, Tc の中から適するものを用いて表せ。 (3) 過程B→Cで気体が得る熱量 QBc 〔J〕 と, 過程C→Aで気体が得る熱量 Qca 〔J〕 を Cv, Cp, Ta, TB, Tc の中から適するものを用いて表せ。 V₂ V (4) 過程B→C→Aで,気体が外部からされる仕事 WBCA 〔J〕 を求めよ。 これと前問の答え とをあわせて考えると, 定積モル比熱 Cv, 定圧モル比熱 C, 気体定数Rとの間の関係 式を見出すことができる。 その関係式を導出せよ。 仕事 WBCA は、 Cv, R, Ta, Ts, Te の中から適するものを用いて表せ。 (5) 図2に示すサイクルの熱効率e を, y, pi Y2 を用いて表せ。 Pa' Vi (6) 図2のサイクルを逆向きに,すなわちA→C→B→Aの順に変化させると、 どのような はたらきをする機関となるか。 これが熱力学第二法則に反しないための条件を含めて、 100字以内で述べよ。 [22 岐阜大]

回答募集中 回答数: 0