学年

教科

質問の種類

物理 高校生

数1青チャートの問題で (2)です 任意の実数xってどういう意味ですか? 問題の意味が理解できません a=0のとき例えばx=0は成り立たないと解説の最初の方にありますがなんのことかわからないです

194 00000 基本 115 常に成り立つ不等式 (絶対不等式) (1) すべての実数x に対して, 2次不等式x2+(k+3)x-k> 0 が成り立つよう な定数kの値の範囲を求めよ。 (2) 任意の実数x に対して, 不等式 ax2²-2√3x+a+2≦ 0 が成り立つような定 数αの値の範囲を求めよ。 p.187 基本事項 指針左辺をf(x) としたときの, y=f(x)のグラフと関連付けて考えるとよい。 (1) f(x)=x2+(k+3)x-kとすると, すべての実数x に対してf(x)> 0 が成り立つのは, y=f(x)のグラフが常にX軸より上側 (v>0 の部分)に あるときである。 y=f(x)のグラフは下に凸の放物線であるから, グラフが 常にx軸より上側にあるための条件は, x軸と共有点をも たないことである。 よって, f(x)=0の判別式をDとする と, D<0 が条件となる。 D<0はkについての不等式になるから, それを解いてんの値の範囲を求める。 (2)(1)と同様に解くことができるが,単に「不等式」 とあるから.α=0の場合(2次 y=f(x) f(x)の値が常に正 a=0のとき、 y=f(x) の よって す の条件は, x軸と共有 ある。 2 める条件 であるか よって a<0と [補足] この例題 対不等式

解決済み 回答数: 1
物理 高校生

物理の電磁気の質問です。大問4の解答の左の1番上の段のF=|Fa-Fb|は分かるのですが、その後の Faは点A,点Cに、Fbは点B,点C に着目してクーロンの法則を用いているのが何故なのか分かりません

4 1 AはBから引力を受けているからB の電荷は負。 -g とおくと 90=9×10°x 2×10-q_ 0.12 2q g=5x10-5 .. -5x10-5C なお、問題文では 「電荷はいくらか」 としたが,「電気量はいくらか」 と同じ 意味である。 「電荷」 の方が 「電気量」よ り広い意味で用いられているが,区別は 気にかけなくてよい。 A 2 F=9×10°× =1.6N, 引力 接触させると電荷の一部は中和する。 残るのは F'=9x10°× 3 F₂=429 Fc=kg.2gkg2 (2a) 2 F=√FB²+Fc² 電磁気 +2×10-+(−8×10-)=-6×10-6 この電荷は A, B に半分 (-3×10-) ずつ分かれ、再び離すと両者は負で岸 りょく 力となる。 - kq² √√1+ a = √5 kq² 2a² = 0.9N, 斥力 ( 反発力) B g |_2×10-×8×10-6 0.32 3×10-×3×10-6 20.32 = 1 Fr B+ A+ FB FB Fc F [9] FA C DU 4* 図のような電荷をもつ小球 A, B, C が直線上 にa, rの距離を隔てて置かれている。Cが受け る静電気力の大きさFを求め, その向きが右向 きとなるためのrの範囲を求め, αで表せ。 右向きとなるためには FA-FB が正と なればよい。102 .. r²-2ar-a²>0 左辺=0とおいたときの2次方程式の解 r=a±√2a を用いて r>0 より r> (1+√2)a Cを自由に置ける場合には, AB間も 含まれる (FA, FBともに右向きの力と なるから)。 A より左側はFAが左向き で右向きのFBより大きく(Aの方が電 気量が大きいし距離が近いから), あり 得ない。 次図の太線部が該当することに なる。このような定性的な見方も大切で ある。 +1C →+++ C +2g F=FA-FB k2gg -|(a+r) ² = k·a·a/ C... kQ kq2r²-2ar-a² (a+r)²² A B 5 実線が+ のつくる電場 点線がのつくる電場 灰色は合成電場 -q A B (1+√2)a. Q Eo D +q C 07 D' E2 07 kQ (2a)² (4a)² D… y方向はキャンセルして消えてし まう。 x 方向は E₁ F xC + Q 3kQ 16a², 北方向

回答募集中 回答数: 0
物理 高校生

写真の問題についてですが なぜ(2)(3)でエネルギー保存則を用いることができるのですか?Pがばねに衝突したときに発する音や熱などの保存力以外が生じることから、エネルギー保存則は崩れるのではないでしょうか?

EX 滑らかな水平面上に質量Mの球Q がばね定 数kのばねを付けられた状態で置かれている。 左から質量 m の球Pが速度で進んできた。 (1) ばねが最も縮んだときのPの速度を求めよ。 △△ (2) ばねの縮みの最大値を求めよ。 (3) やがてPはばねから離れた。 Pの速度u を求めよ。 解 (1) P がばねを押し縮めると同時に, Qは (2) 力学的エネルギー保存則より 2 1/2mv ² = 1 {mv²³ + 1 Mv² + 1/2kl² ばねに押されて動き出す。 ばねが最も縮 んだときとは Qから見て接近してくる Pが一瞬静止したときでもある。 つまり、相対速度が0となるときだ。 し たがって、このとき Qの速度もである。 AUTO200 運動量保存則より mv=mv+Mv 地面から見た温度 トク 2物体が動いているとき, "最も..... は相対速度に着目 ちょっと一言 Uを消去して整理すると 2次方程式の解の公式より u= Qから見た Pの運動 V=- m u=- P m+M m+M Vo m m+M -Vo 1% ・vo mM :: 1=v₁₁ k(m+M) k 止まった) (18) ここでQ上の人に保存則まで用いさせてはいけない。 保存則や 運動方程式は静止系 (あるいは慣性系)で用いるべきもの。 ただし, 次章で扱う慣性力の効果まで考慮すれば加速度系で用し ることもできる。 (3) Q の速度をUとすると 運動量保存則より mv=mu+MU ...... ① ばねは自然長に戻っているから,力学的エネルギー保存則よりP発射 -mvo´ 2-1/23m²+1/2 MU2 (U2) ….….…. ② (m+M)u²-2mvou+(m_M)vo² = 0 05 相対速度 0 P.Qの速度は同じ 1このとき、相対に。 M u=v とすると, ① より U=0となって不適 (ばねに押されたQは右 (1 いているはず) 20 V. m-M

未解決 回答数: 2