学年

教科

質問の種類

物理 高校生

振幅が何故こうなるのか分かりません

66 波の式 軸の原点Oにある波源Sか 振動数f, 波長の波が左右 に出ている。 S から右に距離L だけ離れた所に壁Rがあり,波 はここで振幅を変えずに固定端 反射される。Sから出る波の0 における変位y, 時刻t に対して y = Asin 2nft と表されるものとする。 (0 ≤ x ≤ L) (2) 壁からの反射波の式y2 をx, tの関数として表せ。 (x≧L (1) Sから壁に向かう入射波の式をx,tの関数として表せ。 66 波の式 COS @= R (3) SR間で,合成波の変位は次式のように表される。 y = 2A sin (イ) (ア), (イ)を埋めよ。 また, 常に y = 0 となる位置xを整数 n = 0, 1,2…)を用いて表せ。 (4) S の左側に生じる波 (合成波) の振幅を求めよ。 また, 振幅が最大 となるときのLを入, n で表せ。 (東京理科大) 187 Level (1) ★ (2), (3) ★ (4) ★★ Point & Hint 力学では単振動の式は y=A sin wt として扱うことが多い。 2π の関係がある。 T 点0で起こることは, 3 4tの時間を隔てて位 置xでくり返される。 (1) 波が原点Oから位置 xまで伝わるのに要す る時間⊿t をまず調べる。 次に, 位置 x で時刻 tのときの変位は, 0 でのいつの時刻の変位と 等しいかを考える。 (2) (1)の結果から壁 R でのy2 の時間変化がわかる。 そこで, R から位置 xまで伝 わる時間を調べる。考え方は (1) と同じこと。 a IB cosa FB (3) 三角関数の公式 sinα土sinβ=2sin@th COS 2 (4)まず,Sから直接に左へ向かう波の式をつくる。 を用いる。

回答募集中 回答数: 0
物理 高校生

数1青チャートの問題で (2)です 任意の実数xってどういう意味ですか? 問題の意味が理解できません a=0のとき例えばx=0は成り立たないと解説の最初の方にありますがなんのことかわからないです

194 00000 基本 115 常に成り立つ不等式 (絶対不等式) (1) すべての実数x に対して, 2次不等式x2+(k+3)x-k> 0 が成り立つよう な定数kの値の範囲を求めよ。 (2) 任意の実数x に対して, 不等式 ax2²-2√3x+a+2≦ 0 が成り立つような定 数αの値の範囲を求めよ。 p.187 基本事項 指針左辺をf(x) としたときの, y=f(x)のグラフと関連付けて考えるとよい。 (1) f(x)=x2+(k+3)x-kとすると, すべての実数x に対してf(x)> 0 が成り立つのは, y=f(x)のグラフが常にX軸より上側 (v>0 の部分)に あるときである。 y=f(x)のグラフは下に凸の放物線であるから, グラフが 常にx軸より上側にあるための条件は, x軸と共有点をも たないことである。 よって, f(x)=0の判別式をDとする と, D<0 が条件となる。 D<0はkについての不等式になるから, それを解いてんの値の範囲を求める。 (2)(1)と同様に解くことができるが,単に「不等式」 とあるから.α=0の場合(2次 y=f(x) f(x)の値が常に正 a=0のとき、 y=f(x) の よって す の条件は, x軸と共有 ある。 2 める条件 であるか よって a<0と [補足] この例題 対不等式

解決済み 回答数: 1