学年

教科

質問の種類

物理 高校生

物理基礎の運動方程式の問題です。素朴な疑問なんですが、AがBを押す力はなぜ20Nではないのですか? 教えていただけると嬉しいです。

例題 解説動画 第Ⅰ章 運動とエネルギー m/s2 とする。 口の合力は, 基本例題 11 接触した2物体の運動 水平でなめらかな机の上に,質量がそれぞれ2.0kg, 受けたとき, 生 F2 F₁ 3.0kgの物体A,Bを接触させて置く。 Aを右向きに制 20N の力で押し続けるとき, 次の各問に答えよ。 (1) A, B の加速度の大きさはいくらか。 (2)A,Bの間でおよぼしあう力の大きさはいくらか。 指針 2つの物体が接触しながら運動して いるとき, 作用・反作用の法則から, 2つの物体 は,大きさが等しく逆向きの力をおよぼしあって いる。 A, B が受ける力を図示し, それぞれにつ いて運動方程式を立て, 連立させて求める。 ■解説 (1) AとBがおよぼしあう力の大 きさをF〔N〕 とすると, 各物体が受ける運動方 係数が0.60 の 。 動摩擦係数が にあるとき, 大 B けて落下して 物理 AF[N] [F[N] |a[m/s] 20N → 基本例題12 連結された物体の運動 20N 基本問題 87,96 B 向の力は,図のようになる。 運動する向きを正 とし,A,Bの加速度をα 〔m/s2] とすると,そ れぞれの運動方程式は, A: 2.0×a=20-F ... ① B:3.0×α=F 式 ①,② から, a=4.0m/s2 (2) (1)の結果を式 ② に代入すると, [И]V 3.0×4.0=F F=12N Point A, B をまとめて1つの物体とみなすと, 運動方程式は, (2.0+3.0)a=20 となり,a が 求められる。 しかし, F を求めるためには, 物 体ごとに運動方程式を立てる必要がある。 ・大 例題 基本問題 88, 92 =説動画 図のように, なめらかな水平面上に置かれた質量 M [kg] の物体Aに軽い糸をつけ、軽い滑車を通して他端に質量 M[kg] A 問題 85, 88,90

解決済み 回答数: 1
物理 高校生

物理基礎 2物体の運動について。 写真の問題の(3)は滑車には張力Sと2つの張力Tがはたらいているとありますが、なぜ2つの張力があるのか分かりません。作用・反作用だと思うのですが、感覚的には理解出来ません。 また、(4)解答の「v=atより」からの計算の途中式が省かれ... 続きを読む

注(1)と これは全体ひとまとめの運動 が,力fは求められない。 8/26 基本例題 16 2物体の運動 -77 解説動画 定滑車に糸をかけ,その両端に質量Mとmの物体A, B をつる す。Bは地上に,Aは高さんの所にある。 糸や滑車の質量を無視 し,M>m,重力加速度の大きさをg とする。 物体Aを静かには なして降下させるとき, 次の各量を求めよ。 (1)Aの加速度の大きさα (2)Aをつるしている糸1の張力の大きさT 糸 2 糸 1 M h B (3) 滑車をつるしている糸2の張力の大きさ S m (4)Aが地面に達するまでの時間 t と,そのときのAの速さ” 指針 A,Bは1本の糸でつながれているので,加速度の大きさαも糸の張力Tも等しい。各物 体ごとに,はたらく力の合力を求め、進行方向を正としてそれぞれ運動方程式を立てる。 解答 (1),(2) A,B にはたらく力は右図となるので,運動方程式は A: Ma=Mg-T B:ma=T-mg これより, α, Tを求めると a=. M-m M+m³ 2Mm -g T=- -g M+m (3)滑車には張力Sと2つの張力Tがはたらいて, つりあうので 4Mm S=2T= -g M+ma (4) Aが地面に達するまでに, Aはん進む。 h = 1/12a12 より=1 =1/24より v=at より v= 2h 2(M+m)h va = (M-m)g M-m 「2(M+m)h 2(M-m)gh M+m 9√(M-m)g = M+m TAT TA a Mg B mg →

回答募集中 回答数: 0
物理 高校生

物理のエッセンスからです。 3枚目の下にある①、②より、Tの式が書かれてますが、この式は①②の式をまとめればこの式になるのでしょうか? そうであるならどういうふうにまとめれば良いか教えて頂きたいです。

量mのPが水 平に円運動をしている。 Pの底からの高さはんである。 面の垂直抗力 N,Pの速さv, 周期Tを求めよ。 93* 滑らかな水平床上を長さの糸に結ばれて角速度 ので円運動する質量mの小球Pがある。糸の端は 高さんの点0に固定されている。糸の張力Sと床 からの垂直抗力 N を求めよ。 ω がある値 ω をこえ るとPは床から離れる。 ω を求めよ。 面から離れる 垂直抗力= 0 ・R→ P 鉛直面内の円運動 糸におもりを付けて鉛直面内で回したり,円筒面を滑り動く小球の運動な どは円運動であっても, 等速ではない (上へ上がるほど位置エネルギーに食 われてスピードが遅くなる)だけに扱いが難しい 鉛直面内の円運動を解く 1 力学的エネルギー保存則 2 遠心力を考えて,半径方向で 糸 T 4 v 解説〕 力のつり合い式をつくる。 Vo +1 mg 遠心力 図1のように長さの糸で結ばれたおもりを最下点から初速v で回す。角日 をなしたときの速さをv, 糸の張力を とすると,より 1212mv=1/2mu2+mgr(1-cos 0) mgr -mgrcoso

解決済み 回答数: 1