学年

教科

質問の種類

物理 高校生

mv2乗/Rってどこから来たのですか? 解説読んでも分かりません。

2 半径Rの円筒が中心軸を水平 にして固定されている。この 円筒の内面の最下点Pに小球を置 き,円の接線方向に初速度を与え る。このとき小球が円筒内面から離 れることなく円運動をつづけるため には、初速度の大きさをいくら以上 にすればよいか。 ただし, 重力加速 度の大きさをgとし, 円筒内面はな めらかであるとする。 三橋元流で 解く! 1/1/12 となり. 0 ですね。 なめらかな面なので力学的エネルギー保存則が成立します。 そこで、次 のような問題を考えてみましょう。 準備 図7-23のようななめらか な斜面があって, 小球に最下点で初速 度を与えて, 高さ2Rまですべり上が らせるにはどれだけの初速度の大きさ が必要かという問題です。 この場合,小球は高さ2Rにぎりぎ り達すればよいので, 高さ2Rのとき 速さ0でかまいません。 そうすると, このぎりぎり2Rまで達するときの初速度の大きさを1とすると、力学 エネルギー保存則より. 2 mv² = mg 2R R 円筒内面の最高点をQとします。点Qは点Pの真上でPから 測って高さ2Rです。 小球が円筒内面から離れることなく円 動をつづけるということは, 小球が点Q まで達するということ Vo P 図7-23

解決済み 回答数: 3
物理 高校生

(シ)で直列(問題の図4)と並列(問題の図5)の時のコンデンサーに蓄えるエネルギーを比較しているのですが(シ)の解説で0<ω^2LC<2の時とあるのですがどうしてこの範囲になるのか分かりません。 ω^2LCが2より大きい値を取った時は考えないのでしょうか? 出典:難問題の... 続きを読む

Chapter 1 電磁気 Section 4 交流と荷電粒子の運動 192 例題 35 交流回路② 以下の空欄(ア)~(シ)にあてはまる式または語句を解答用紙の該当す る欄に記入せよ。 また, 空欄(a), (b)にあてはまる答えを図3から選び、 その番号を解答用紙の該当する欄に記入せよ。 る。したがって、同じ電圧振幅 V を発生する交流電源に接続するとき, コンデンサーが蓄えるエネルギーの最大値は直列接続の場合( [J] であり, 並列接続の場合(ク) 〔J〕 である。 また, コイルが蓄え るエネルギーの最大値は、 直列接続の場合は) [J] であり,並列 接続の場合は) [J] である。 並列接続の場合, コンデンサーが蓄 えるエネルギーの最大値とコイルが蓄えるエネルギーの最大値が等 しくなるのはω=)〔rad/s〕のときである。 コンデンサーから放射される電磁波の強さは, コンデンサーが蓄積 するエネルギーに比例するとしよう。 交流電圧源の電圧振幅 Vo を一 として、交流電圧の角振動数を変えて電磁波の放射エネルギーを大 きくしようとするとき, コイルとコンデンサーの直列接続と並列接続 とを比較するとシン) 接続のほうがより強く電磁波を放射すると考 えられる。 図1に示すように, 電気容量がC〔F〕] のコンデンサーを角振動数ω [ rad/s ] の交流電圧を発生する電圧源に接続する。 回路には時間を [s] として,図2に示すようなIo cos wt 〔A〕 の交流電流が図1の矢印の 向きを正として流れる。 t=0s でコンデンサーの電圧は0Vで,コンテ ンサーの蓄える電荷はOCであった。 交流電流が流れることによって 時刻に図1のコンデンサー上側の極板が蓄える電荷は) [C]で あり、コンデンサー両端の電圧は() [V] である。この交流電圧 はコンデンサーの極板間に,時間的に変動する電界を作る。 変動する電界付近には, 変動する磁界が発生する。 図2の0<t< / 200の間では,コンデンサーの極板間の電界の向きは図3の(a) の向きである。この向きの電界の時間変化率は0<t < π/20 の間で正 であり、この間に変動する電界は、コンデンサーの上側極板に流れ込 む電流が,そのままコンデンサーの極板間を流れるものと考えた場合 に発生する磁界と,同じ向きに磁界を発生する。 したがって,0<t <π/20の間にコンデンサー周囲に発生する磁界は図3(b)の向 きである。 この磁界の周りには、変動する電界がさらに発生する。 こ うして、コンデンサーの周りには、次々と変動する磁界と電界が発生 し、周りの空間に伝えられる。 これが電磁波である。 光の速さをc[m/ s] とすると,このコンデンサーから放射された電磁波の波長は(ウ) [m〕 と計算される。 コンデンサーから電磁波を発生させるとき, コンデンサーとコイル を接続した回路がよく用いられる。 電気容量C [F] のコンデンサーと 自己インダクタンスL [H] のコイルを,図4のように直列接続する場 合と,図5のように並列接続する場合を比較しよう。図4の直列回路 I cos at 〔A〕 の交流電流が流れるとき, 電圧源が発生する電圧の振 幅は国〔V〕である。 一方, 図5の並列回路のコイルとコンデンサー Vosin at 〔V〕 の電圧を加える場合には, コンデンサーに流れる電流 の振幅は(オ) [A], コイルに流れる電流の振幅はカ) [A] であ 図 1 考え方の キホン 電流 415 図4 電流 [A] Io 0 -10 2ω ② 3 w2w 図2 図5 2x 時間 t(s) コンデンサー -0 電流 図3 (同志社大) 交流で電圧や電流を求める場合、 普通は,振幅(最大値) と位相を 別々に処理すればよい。 振幅はオームの法則から求め、位相はπ/2 だけ進むとか遅れるとかを判断し, cot+π/2とかwt-π/2とかとすればよい。ただ この問題では、設問の順序からみて、 微分や積分を用いて解答するのが、出題者 の意図であろう。 1-4 交流と荷電粒子の運動 電磁気 193

解決済み 回答数: 1
物理 高校生

(1)の(ロ)について。 なぜitグラフとqtグラフが解答のように曲線になるのか分かりません。 今まで物理でグラフを書けという問題の時は数式を立ててその数式を元にグラフを描いていたのですが、ネットで調べると微分やら積分やらごちゃごちゃしていて、、、 この二つのグラフはもう... 続きを読む

起電力 V [V] の内部抵抗の無視できる電池E, 電気容量の C [F] の平行板コンデンサー C (極板 A,B), 抵抗値R [S2] の抵抗R. スイッチSを図のように接続した回路がある。 空気の 比誘電率を1とし、極板の端における電場の乱れは無視できるものとする。 次の問に答えよ。 ただし、はじめSは開いており,Cに電荷は蓄えられていないものとする。 (1) 時刻 t0 [s〕にSを閉じた。 (イ)Sを閉じた直後, R の両端の電圧はいくらか (ロ) 極板 A の電荷g およびRを流れる電流が時刻とともに変化する様子の概形を, 横軸に時刻t をとってそれぞれ描け。 個人 (V) Sを閉じてから十分に時間がたつまでの間にRで消費される電気エネルギーはいく らか。 (8) SCHOKI (2)Sを閉じて十分に時間がたった後, S を開いた。 その後, 極板 AB間の間隔を2倍に広 げた。このとき, AB間の電圧, 静電エネルギーおよびAB間の電場の強さは,それぞれ の元の何倍となるか。 VE= S R C A B

解決済み 回答数: 1