学年

教科

質問の種類

物理 高校生

式の立て方はわかるのですが、どうして振動の中心が変わるのかわかりません。教えて頂きたいです🙇

52. <あらい面上で振動する物体の運動〉 ばね定数 質量m 図のように, 水平なあらい床の上に質量mの物 体が置かれている。 物体はばね定数んのばねで壁と つながっている。 右向きにx軸をとり, ばねが自然 の長さのときの物体の位置を原点とする。 次の問い に答えよ。 ただし, 重力加速度の大きさをgとする。 物体を原点より右側で静かにはなす実験を行った。物体を位置 d(> 0) より左側ではなす とそのまま静止していたが,右側ではなすと動きだした。 (1) 物体と床の間の静止摩擦係数μを求めよ。 0 x 物体を位置 x(>d) から静かにはなすと, 物体は左向きに動きだした。 その後, 物体の速 さは位置 x1 (<-d)で初めて0となった。 (2) 物体と床の間の動摩擦係数μ' を求めよ。 (3)物体の加速度をαとして,左向きに運動している物体の位置xでの運動方程式を示せ。 (4) 物体が x から x1 に移動するまでにかかった時間を求めよ。 (5)xo から x1 に移動する間で, 物体の速さが最大となるときの位置と速さを求めよ。 その後, 物体は右向きに動きだし, ある位置 (>d) で再び速さが0となった。 (6)x1 から再び速さが0となった位置に移動する間で, 物体の速さが最大となるときの位置 を求めよ。 (7) 物体の速さが再び0となった位置 x2 を x と x1 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
物理 高校生

この問題って反時計回りに回ると上向きの磁場が増えるので、下向きの磁場を作り出そうとしないのですか?

用いて表せ。 た。 位置エネルギー E, を、それぞれ計算し、両者が等しくなることを示せ。 [21 新潟大] しているジュール熱P, と, コイルが単位時間当たりに失 130. 〈回転する導体棒に生じる誘導起電力〉 次の文中の空欄 ア~オに当てはまる式を書け。 また, 空欄 ac には当ては まる向きを図1の①~⑥の矢印の中から選べ。 図2には適切なグラフの概形をかけ。 図1のように、 鉛直上向きの磁束密度の大きさ B[T〕 の一様な磁場中に, 導線でできた点を中心とする半径 am〕 の円形コイルが水平に置かれている。 円形コイル の上には長さαの細い導体棒の一端Pがのせられ,導体 棒の他端は,点の位置で,磁場に平行な回転軸に取り つけられている。 導体棒 OP は点Oを中心として,端P が常に円形コイルと接触しながら, 水平面内でなめらか に回転することができ, そのときの導体棒と円形コイル の間の摩擦はないものとする。 回転軸も導体であり,回 転軸と円形コイルの間に抵抗値 R [Ω] の抵抗Rとスイ ッチSを接続している。 BL 0 ⑥ 円形のコイル 電場の強さ 回転軸 B 抵抗 R 図 1 スイッチS (N/C) 0 a 点 0からの距離(m) 図2 スイッチSを開いて,導体棒を点を中心として鉛直 上方から見て反時計回りに,一定の角速度 rad/s] で 回転させる。このとき導体棒OPの中点Qに位置する 導体棒中の電気量 -e [C] の電子が磁場から受ける力の 大きさは ア 〔N〕 で,その向きは図1の矢印 の向きである。この力は,導体棒中に生じる電場から電子が受ける力とつりあう。導体棒中 に生じる電場の強さは点0からの距離によって異なる。図 2 に OP 間の各点における電場 の強さのグラフを、横軸に点0からの距離をとり,縦軸を適切に定めてかけ。 a 次に,スイッチSを閉じて, 導体棒を点を中心として鉛直上方から見て反時計回りに、 一定の角速度で回転させる。 導体棒が磁場を横切ることにより OP 間に起電力が生じる。 この起電力の大きさはイ 〔V〕 で, 導体棒を流れる電流の向きは図1の矢印b の向 きである。このとき, 抵抗Rで消費される電力はウ 〔W〕 である。 導体棒に電流が流れ ることにより導体棒全体が磁場から受ける力は,大きさが エ [N] で、図1の矢印 [ [c の向きである。 磁場から受けるこの力のすべてが導体棒の中点Qにはたらくと考え ると,導体棒を一定の角速度で回転させるために必要な仕事率はオ 〔W〕 である。 C 〔15 同志社大〕 (図)

未解決 回答数: 1
物理 高校生

高校物理です。すべり抵抗器がわからず、とけません。解説お願いします!!!

第1回 21 次に, 内部抵抗が無視できる起電力 100V の電池, 抵抗値が未知の抵抗 R, 抵 抗値40Ωの抵抗, 長さ1mで抵抗値100Ωのすべり抵抗器, 電圧計, 検流計, ス イッチSを用いて図2のような回路を組み立てた。 スイッチSを開いた状態で, 接点Tの位置を点から点bまで変えながら,その都度,点aから接点Tまでの 距離、電圧計の値を記録した。その結果, 図3に示されるグラフが得られ た。 すべり抵抗器 b T OMS オ に入れる語の組合せとして最も適当な 問3 次の文章中の空欄 ウ ものを,後の①~⑧のうちから一つ選べ。 22 図2において, 接点Tの位置を点から点bの方向へ変えていくと, Tb 間の抵抗値はウ なる。このことから, スイッチSを開いた状態で接点T を点aから点bの方向へ変えていくと, 点cを基準とした接点Tの電位は エなる。 また, 0<x<60cm のとき, スイッチSを閉じると, 検流計 に流れる電流の向きはオ となる。 50 V (V) 電圧計 v R1 C JB,100 V 図2 流計 40Ω -x 〔cm〕 0 30 60 図3 -24- V=RI V ウ I オ R= I ① 大きく 高く Tからc RTA= 100 ② 大きく 高く cからT I ③ 大きく ④ 大きく 低く 低く Tからc RTB= cからT ⑤ 小さく 高く Tからc (9 小さく 高く cからT 小さく 低く Tからc ⑧ 小さく 低く cからT 問4 x=40cm のとき, 電圧計の示す値として最も近いものを,次の①~⑥の うちから一つ選べ。 23 ①29v ② 31 V 33 V ④ 35V ⑤ 37 V 6 39 V 問5 抵抗 R, の抵抗値として最も適当なものを,次の①~⑥のうちから一つ選べ。 24 ① 10Ω ② 20Ω 30Ω ④ 40Ω 50Ω 60Ω -25-

回答募集中 回答数: 0
物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0
物理 高校生

高校物理です! この問題のエの答えがb→aなのですが、解答の黄色の線の部分はなぜこうなるのですか? 教えてください!

問2 次の文章中の空欄 I に入れる数値と記号の組合せとして 最も適当なものを,後の①~⑧のうちから一つ選べ。 2 図2のように、抵抗値が2.003.0Ωの抵抗, 可変抵抗 抵抗値のわか らない抵抗Rと, 検流計, 直流電源を接続する。 可変抵抗の抵抗値を 1.0 Ω にすると,検流計に電流は流れなかった。 このことより,抵抗R の抵抗値 は ウ であることがわかる。順で焼き また可変抵抗の抵抗値を1.0Ωより大きくすると、 検流計に電流が流れ た。このとき、 検流計に流れた電流の向きは図2の I の向きである。 可変抵抗 2.0 a 20 2 R R = 検流計 (↑) 3.0Ω →I2 R 60 V= V 図 2 〔電流の向きの別解] 可変抵抗の抵抗値を 1.0 Ωにすると, ab 間の検流 計に電流が流れないので, 点と点bは等電位であ る。 ab間の検流計と導線を取り去り、可変抵抗の抵 抗値を1.0Ωより大きくすると、 点a を流れる電流 は小さくなるので, 2.0 Ωの抵抗に加わる電圧は小さ くなり,点aの電位は低くなる。また,点bを流れ 電流は変化しないので,点bの電位は変化しない。 よって、この状態でab間を導線でつなぐと, b→a の向きに電流が流れる。

未解決 回答数: 1