学年

教科

質問の種類

物理 高校生

まるで囲った図の重力の分解で重力とy方向に分解した力との間の角がなぜθになるかわかりません。 教えてもらえると嬉しいです。

問題 66 68 鉛直方向: Tsin60° + Tzsin30°-10=0 (2) おもりが受ける力は,図2のようになる。 力のつりあいから 水平方向: Tacos 30°Tcos60°=0 Tsin 60° TA ③ T2sin 30° ...4 T. 60° 30° 式 ③から, Ticos 60° T2cos 30° √3 2 T₂-2 T₁ =0 T=√3T2 ...⑤ 解説(1) 物体は, 重力, 垂直抗力, 弾性力を受け,それらの力はつ りあっている(図)。 弾性力をFとすると, 斜面に平行な方向での力の つりあいから, 垂直抗力 mgsin 0- F-mgsin0=0 F=mgsin0 式④から, 図2 10N √3 T₂ 2 -T₁+ 2 -10=0 mgsino x k これに式 ⑤を代入して、 √√√37₂+-10=0 T2 (2) ばねの縮みをxとする。 (1) の結果を用いて, フックの法則 「F=kx」 から, kx=mgsino 67.2物体のつりあい mg 2=5.0N 2 解答 したがって T=√3T2=1.73×5.0=8.65N 8.7N (1) mg 2 m (2) 2 (3) おもりが受ける力は, 図3のようになる。 力のつりあいから, 水平方向: T2- Tsin45°=0.⑥ T₁ Ticos 45° T₁ 鉛直方向: T, cos 45°-10=0.⑦ 式⑦から, 1-10=0 √2 T=10√2=10×1.41=14.1N 式⑥から, 45° 45°mans 484177₁sin45° T₂ 14 N T₁ T2- -= 0 T₁ 10/2 Tz= = √2 √2 -=10N 【別解】 (1) 図4のよ うに, T., T2の合力と重 力はつりあっている。 し たがって, 0-8001-21+ 指針 台車が受ける力を図示し, それらを斜面に平行な方向と垂直な 方向に分け, 平行な方向での力のつりあいを考える。 なお, 軽い糸は, その両端につながれた台車, おもりに同じ大きさの力をおよぼしている。 解説 (1) 糸の張力の大き さをT とすると, 台車, おも りが受ける力は,図のように 示される。 重力の斜面に平行 な方向の成分は, mgsin 30° であり,その方向での力のつ りあいから, 垂直抗力 T \T_ mgsin30° 4300 Mg mg cos 30° 30° mg 斜面に垂直な方向では. 台車が受ける重力の成分 と、 垂直抗力がつりあっ ている。 糸の張力を求め るには,斜面に垂直な方 向での力のつりあいの を立てる必要はない。 別解】 (1) 直角三角形 この辺の長さの比を利用 て、 重力の斜面に平行 方向の成分 (W) を求 ることもできる。 合力 ① 力①合力( T-mgsin30°=0 T=mgsin30°= mg W. 30° T IXPA 2 み 60° 60° Tz T=T2=10N 3 \30② 160° ② F① 45° (2) おもりが受ける糸の張力の大きさは,台車が受ける張力に等しい。 おもりの質量をMとすると, おもりが受ける力のつりあいから, ② <30° mg ① (2) 図5のように,T, T-Mg=0 Mg=T= mg 2 M= T2 の合力と重力はつり T₂ m 2 mg: Wx=2:1 mg あっている。 68. 弾性力と垂直抗力 Wx= 2 T=10x1 √3 × 図410N 図510N 8JJY 図6 V10N =5.0√3 =5.0×1.73=8.65N 8.7N 7-10x=5.0N (3) 図6のように, T., T2 の合力と重力はつりあっている。 T=10×√2 =10×1.41=14.1N 14N T2=10N 66. 斜面上での力のつりあい 解答 (1) mgsin0 (2) mgsind k 指針 物体が受ける力はつりあっており、斜面に平行な方向について, つりあいの式を立てる。 (1)~(3) それぞれ三 角形の辺の長さの比を利 用して求めている。 解答 (1) 1.0×102N/m (2) 10kg (3) 49N 指針 (1) フックの法則を用いる。 (2) おもりが受ける重力の斜面に 平行な方向の成分と, ばねの弾性力とのつりあいから おもりの質量を 求める。 (3) ばねの伸びは (2) のときと同じなので, 弾性力は変わらない。 弾性力と,重力,垂直抗力のつりあいの式を立てる。 解説(1) ばね定数をkとすると,フックの法則 「F=kx」 から, 10=kx0.10 k=1.0×10°N/m (2) おもりは箱の右側の内壁にちょうど接しており、右側の内壁から は垂直抗力を受けない。 おもりが受ける力は、 図1のように示される。 ばねの弾性力 F は, 「F=kx」 から, F=(1.0×102) x 0.49=49N おもりの質量をm とすると, おもりが受ける斜面に平行な方向の力 のつりあいから, 49-m×9.8sin30°=0 m=10kg ◎問題文では,ぱ びの単位が cm で れているので,m てフックの法則を F[N] 000000 図1 mx 30° 30° mx9 √3 (2) 別解 (2) 直角三角形の辺の長さの比を利用して, 重力の斜面に 平行な方向の成分 (Wx) を求めることもできる(図2)。 図2 (1 mx 42

解決済み 回答数: 1
物理 高校生

物理基礎です。 青マーカーの所なんですけど このとき運動エネルギーは何故0になるのですか? vが不明な場合は0にするということでしょうか?

EXERCISE 例題 17力学的エネルギーの保存 ばね定数98N/mのばねに質量 2.0×10-2kgの物体を押しつけ, ばねを0.10m縮めた点Aから静かに手をはなすと, 物体はばね からはなれ,曲面を点Cまで上がった。 水平面AB, および曲 面BCD はなめらかで摩擦はないものとして,次の問いに答え よ。 ただし, 重力加速度の大きさは9.8m/s2 とする。 (1)点Bでの物体の速さ V[m/s] を求めよ。 (2) 水平面 ABからの点Cの高さH[m] を求めよ。 |ばね定数 |98N/m [000000 +10 ▶54, 57 D 10m (3) ばねを x〔m〕 縮めた点A'から静かに手をはなしたとき,物体の最高到達点は,水平面ABからの高 さが10mの点Dであった。 x を求めよ。 ここが ポイント ◆解法 ◆ (1)点Aと点Bで力学的エネルギーは保存する。 (2) 点A (あるいは点B)と点Cで 力学的エネルギーは保存する。(3) 点Aと点Dで力学的エネルギーは保存する。 (1) 水平面 ABを重力による位置エネルギーの基準面 とすると,点Aでの力学的エネルギー EA 〔J〕 は Ex=0+0+1×98×(0.10)2 = 0.49 [J] 点Bでの力学的エネルギーEB 〔J] は Ec=EA(=EB) であるから (2.0×10-2) x 9.8 × H = 0.49 H 0.49 (2.0×10-2) x 9.8 = 2.5〔m〕 (3) 点 A'での力学的エネルギーE^' 〔J〕] は 0+1/x 答 2.5m Ex' = 0 +0+ -x98xx2 EB =1/2x - × (2.0×10-2) x V2 + 0 + 0 = = 1.0 × 10-2 × V2 [J] である。 ( EA ) = イ(EB )より 点Dでの力学的エネルギー En 〔J] は En = 0 + (2.0×10 -2) x 9.8 × 10 + 0 である。ウ( 0.49 V= 0.49 = 1.0 × 10-2 × V2 1.0×10-2 7.0 [m/s] (2)点Cでの力学的エネルギー Ec 〔J] は Ec = 0 + (2.0×10-2) x 9.8×H [J] +0 答 7.0m/s ) -x98xx = (2.0×10 -2) x 9.8 × 10 x 2 = 4.0×10-2 x=0.20〔m〕 )より 答 0.20m

解決済み 回答数: 1