学年

教科

質問の種類

物理 高校生

この問題の問4、問5が分かりません。 答えと解説、両方ともお願いしたいです。

2 軽くてなめらかに動くことのできるピストンの付いたシリンダーを考える。 以下の問いに答え よ。 なお、解答用紙には答えに至る説明あるいは計算過程も記述せよ。 ( 60点 ) 問1.はじめはピストンが固定され、図のようにシリンダー内が薄い仕切り板により体積 1/3V[m²) および 1/2 V[m])に区切られているものとする。 体積 1/32V[m]の部分には温度 [K] 圧力 3P [Pa〕の単原子分子理想気体が入れられており,もう一方の部分は真空状態になっている。 この状態から内部の気体がピストンの外に出ないように仕切り板を静かに取り外し、 十分時 間が経った後の状態を状態 A とする。 状態 A の気体の圧力を求め, V, TP のうち必要な ものを用いて表せ。なお、この過程においてシリンダー内の気体は断熱状態に置かれている ものとする。 3P'v=Q+ 3 13 3 3P. T 真空 E PV 状態 Aの気体に対して,ピストンを固定したまま熱量 Q, [J] を加えたところ、 気体の圧力が上 昇した。 この状態を状態Bとする。 次に, 状態Bからピストンの固定を外し、 気体の温度を一定 に保ったまま, 気体の体積が2V[m²〕になるまでゆっくりと膨張させた。 気体が膨張した後の状 態を状態C とする。 ここで状態Cの圧力は状態 Aの圧力よりも大きかった。 その後,状態Cか ら気体の体積を保ったまま、 気体の圧力を状態 Aと同じにした。 この状態を状態Dとする。 最 後に,状態Dから気体の圧力を保ったまま、 気体の体積を状態 Aの体積まで圧縮した。 問2. 状態 B の気体の圧力を求め, V, P, Q」 を用いて表せ。 問3. 状態Cの気体の圧力を求め, V, P, Q を用いて表せ。 問4. A→B→C→D→Aの一連の過程を熱機関のサイクルとみなしたとき,このサイクルに おいて気体が外部に対して正負にかかわらずゼロではない仕事をした過程はどこか。 対応す る過程を下記の(a)~(d)から全て選択し, 解答欄の所定の場所に記入せよ。 また, 過程B→C において気体に加えられた熱量を Q2[J]としたとき, サイクル全体で気体が外部にした仕事 の総和を求め,V, P. Q2 を用いて表せ。 (a) A-B (b) B-C +Q 2V (c) C-D (d) D-A 7. 問5. 問4のサイクルにおける熱効率を求め, V, P. Q, Q2 を用いて表せ。 ご PV @a,+PV. 3 2 Q,+P EV

回答募集中 回答数: 0
物理 高校生

【物理記述】 物理の記述がどこまで説明すればいいのかわかりません💦例えば新しい力を表す文字を使う時、図に書いていれば説明しなくても良いかなどです、、、他にも記述で気をつけることやこと回答でダメな箇所があったら指摘してくれると嬉しいです🙇‍♀️

1 軽いばねの両端に同じ質量mの物体AとBを取 りつけ, 滑らかな円筒状のガードでばねが鉛直に保 たれるようにして,Bを床の上に置いたところ、ば ねの長さが自然長よりα だけ縮んだ位置 0でAは 静止した。重力加速度を g とする。 (1) ばねのばね定数はいくらか。 また, 床がBか ら受ける力の大きさはいくらか。 B に作用する力 のつり合いより求めよ。 0 a P ZAZ (2)Aを0点よりさらにαだけ下のP点まで押し下げて、静かに放し たところAは振動した。 (ア) 振動中のAの速さの最大値はいくらか。 (イ) 0点を原点とし、 鉛直下向きを正とするx軸をとると, Aの位 置xは放してからの時間とともにどのように変わるか。 x をtの 関数として表せ。 (3) はじめにAを0点より押し下げる距離を6にして運動させたとき Aの振動中にBが床から離れて上方に動き出さないためには, bの 値はどれだけ以下でなければならないか。

回答募集中 回答数: 0
物理 高校生

Rは球体と四角の物体の間で生じる垂直抗力です。 (3)の解答の所で①から②を引いてaを消してるのは 同じ加速度じゃなくなったらRが消えるのでRが存在するギリギリのところで考えるためですよね?この考え方で合ってるか教えてください。

2μ'g (M+m) 178. ばねに乗った物体 解答 (1) 2mgsino k D 左 VIA, N 台C (2) Ama=k(L-x) -R-mgsin0 B:ma=R-mgsin0 (3) UR (2)(3)AとBがおよぼしあう垂直抗力は、作用・反作用の関係にあり R=0 となったとき, BはAからはなれる。 指針 (1) AとBを一体と考えて、力のつりあいの式を立てる。 解説 (1) ばねの縮みをdとする。A,Bを一体とみなすと,運動方 向に受ける力は図1のように示され, 力のつりあいの式は、 kd-2mgsin0=0 d= 2mgsin ST るん 受ける力 (2) Aが位置xにあるとき, ばねの縮みはlo-x, Aがばねから受ける弾性力はk(l-x) となる。 AR Bが受ける運動方向の力は,それぞれ図2のよう に示される。これから,運動方程式を立てると A:ma=k(l-x)-R-mgsin 0 B:ma=R-mgsino mgsino_ 2mg sin 0 asing 0 0002mg 大日 ak(lo-x) ・・・① 0 mg O ...2 【Aに着目】 (3) BがAからはなれるのは, R=0 となる位置である。 式①一式 ②か ら αを消去してRについて整理すると, 0=k(Z-x)-2R R= k(lo-x) 2 この式から,x=1のとき, R=0 となることがわかる。 したがって, BがAからはなれるのは, ばねが自然の長さのときである。 kd mgsin a. R x mg 0 【Bに着目】 ばねが自然の長 も短いとき,Aは 向きの弾性力を受 自然の長さよりも き, 下向きの弾性 ける。

回答募集中 回答数: 0