学年

教科

質問の種類

物理 高校生

至急お願いします🙇‍♀️🙇‍♀️🙇‍♀️ (2)で、向心力は円の中心に向かう向きに働く力だから、上側にはたらくと思ったんですけど、どうして下向きなんですか??

。 基本例題30 鉛直面内の円運動 図のように,質量mの小物体が, 摩擦のない斜 面上の高さんの点から静かにすべりおりた。 斜面 の最下点は半径rの円の一部になっている。 重力 加速度の大きさをg として 次の各問に答えよ。 (1) 斜面の最下点での小物体の速さを求めよ。 om 1501 (2) 斜面の最下点で, 小物体が面から受ける垂直抗力の大きさを求めよ。 指針 (1) では, 力学的エネルギー保存の 法則から速さを求める。 この結果を用いて, (2) では,最下点での半径方向の運動方程式を立てる。 解説 (1) 最下点での速さを”とし す べり始めた直後と最下点に達したときとで, カ 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, 1 mgh= mv2 2 v=√2gh (2) 重力と垂直抗力の合力が、 最下点での小物 基本問題 213 02 m-=N-mg 体の向心力になる。 半径方向の運動方程式は, AN JON r (1)の結果を用いて, N=mg (1+ (1+2/7 ) mg Point 鉛直面内の運動は等速円運動とならな いが,各瞬間において, 等速円運動と同様の運 動方程式を立てることができる。

解決済み 回答数: 1
物理 高校生

色塗ってるとこの式変形分からないので教えてください!お願いします

こると A cosx と 点dでは CA の媒質の 2πA T -=2U 振動から遅 yは、時刻における原 点での変位に等しい。 ゆえに y=Asin- sin 27 (t-x) ひ ) 波が原点から固定端を経て位置xに伝わるのにかかる時間は,原点から L+(L-x)=2L-xだけ移動しているので、 (3) 2L-x V であるA また,固定端反射では波の位相がずれることから, 時刻における位置x での反射波の変位 y2 は, 時刻t-2-xにおける原点の変位の位相を けずらしたものになる。 2π T Asin (27 (1-21-x)+x|--Asin 2 (1-21-x)on ※B 2L よって y=Asin (4) (2) (3)の合成波の変位をyとすると 277 y=+32=Asin (-)+(-Asin 2(-2-x) T 2π =2Asin T 2L-x V 2 COS 2L- 2π V T 2 <<-A 0 =2Asin となる。 この式において 2Asin T L. cos cos 27 (t-L) 2 (1-x)は振動の位置 x での振幅を表 =(-1)x Asin(ユ ◆ B (2)の結果を直接用いる形の解 法は、彼が原点からx=L で反射して位置まで進む距 離は (2L-x) 固定端にお ける反射で位相がずれるの で、変位は (−1)倍される (位 相が反転する)。 以上より ( のxを (2L-x) にかえて. 変位ys を (-1)倍したもの が yとなる。 t- は時刻に依存した振動を表すので, 波形の進行しない L sin 2x (L-x) cos 2-(1-1) 定在波とわかる。 (5)定在波が最大振幅になるのは COS 2 (t-1)=±1 のときだから y=±2Asin T 2x (L-x) 5 <-%C 固定端は定在波の節節 y= ±2A sin 2x(x) (1)の結果,入=vT と L=2』 を用いると 54 L=±2.Asin2 )= ±2A sin 2x() の最大振幅は2Aである 記の定在波の特徴を用い 図することもできる)。 2A- = 士24sin (12/26) 5 5x 2L 5π =2A cos -x 2L 0 1 5 よって、波形は図a の実線または破線のようになるC -2A セント 75 〈円形波の反射〉 (1) 「反射の際、波の振幅および位相は変わらない反射波は器壁に対して点①と対称な点を波源とする波と同 (2) 反射の際に位相が変わらないので、「2つの波が弱めあう条件』(経路差)=(半波長)×奇数 (3)波源から遠くなると2つの波の経路差は小さくなる。(5)(L上の節の数)=(Oと壁の間にある節の数) (10) ドップラー効果は波源と観測者を結ぶ方向の速度成分によって起こる。 物理重要問題集

未解決 回答数: 1
物理 高校生

(3)で最終的に言いたいことは、θ=θ0だからθで入射して屈折することなく直進した先にm=0のときの明線ができるってことですか? あと、問題にはなっていませんが、ガラスと空気中では屈折率が異なるのにλは変化しないんでしょうか?(媒質が変わらないから変化しないのかなと思ったん... 続きを読む

353折格子 回折格 回折格子に平面波の光を当てると, 子の後方に置かれたスクリーン上に干渉縞が現れる。 じま 回折格子 の断面 00 スリット間隔 (格子定数) dの回折格子に, 波長の平面波の光 を当てたとき,明線の方向が回折格子の法線となす角を0とする。 (1)入射光を回折格子に垂直に当てたとき, sin を入, d および 整数を用いて表せ。 00- 2 図1のように入射光の方向を角度 6。 だけ傾けて回折格子に当 てたとき、回折前後の波面を考え, 隣りあうスリットを通過す」 図1 る光の経路差を求めることにより, sin0を0,入, d, および整数mを用いて表せ。 (2)において、入射光の進行方向と=0の明線ができる方向とのなす角を求めよ。 40=30°= 0.4d のとき, 明線の方向として最も適当なものを図2の(ア)~(カ)の中か ら1つ選べ。 図2 回折格子 * の法線 明線の * 入射光 方向 (ア) (イ) (ウ) (エ) (オ) (力) [兵庫県大 改] -347 物

回答募集中 回答数: 0
物理 高校生

この問題の(エ)と(オ)で、自分の考え方ではどう間違っているのかがわかりません。(エ)は速さなのでm/sを使ってL/2L/3vとしました。(オ)は比を使って求めました。この考え方ではダメな理由をお願いします。🙇

36. 〈木材に打ちこまれた弾丸> 図のように,水平な床上に置かれた質量 M 〔kg〕,長さL〔m〕の 木材に,質量 m 〔kg〕 の弾丸を水平に打ちこむ。 弾丸は木材の中を 水平に進んでいく。弾丸が木材から受ける抵抗力は,速度や場所に よらず一定として次の空欄を埋めよ。 ただし, 木材と弾丸の運動は 直線上に限られ,弾丸の大きさは無視できる。 L m M 木材を床に固定し,弾丸を速さ” [m/s] で打ちこむと 1/3の深さまで進入して止まった。 このとき,弾丸が木材から受けた力積の大きさは ア [N.s], 抵抗力の大きさは 〔N〕, [イ [N] である。 よって, 弾丸が木材に進入してから止まるまでの時間は,ウ〔s] で ある。 また, 弾丸が木材を貫通するには,エ xv [m/s]以上の速さで打ちこまなければ ならない。 木材を固定せず, 床面がなめらかであるとき, 弾丸を速さ(エ)×vで打ちこんでも木材を貫 通しなかった。 弾丸は,オ ×L〔m〕の深さまで進入し, それ以降は木材といっしょに一 定の速さ xv [m/s] で動いた。 [18 大阪医大〕

解決済み 回答数: 1