学年

教科

質問の種類

物理 高校生

133の問題(2)です。 (1)は失った力学的エネルギーを答える問題なので (Aの力学的エネルギ-Bの力学的エネルギー)を引いて求めるのは分かりますが、 (2)で(1)で求めた答えがそのまま使われているのは何故でしょうか。 変化した力学的エネルギーなら (Bの力学的エネルギ... 続きを読む

振動の中心は,基 なる ((1) の図)。 を用いると, mg k m して力学的エ からの垂直抗 減少するから するが, 方法 手からの垂 g つりあいの が, 保存力 い。 一方, まで, お おもりに 三抗力はお 手から負 ギーは減 受けて ので, 運動す 事をし、 がっ れる。 0 な こ 5位 力 ×1.01 2=1.96 √√3 2 >0なので、 +1.0×9.8×0.20+3.09.m √3 Wy=- -mg [N] 2 pl'=. 196 100 2²x7² 102 133. 粗い斜面上での力学的エネルギー KB (1) m (v²-v²)+mgh [J] 22×72×7 102 10 (2) 3 2gh 指針 物体の力学的エネルギーは,動摩擦力からさ れた仕事の分だけ変化する。 解説 (1) 点と点Bでの力学的エネルギーの差 を求める。 B を基準の高さとすると, (1/2mwo'+mgh)-(1/2mv² +0) = m (v²-v²) +mgh (J) (2) 物体が移動した距離をL[m]とすると, 直角三角 形の辺の長さの比から L: h=2:1 L=2h[m] また、重力の斜面に垂直な方向の成分の大きさを W, [N] とすると, 直角三角形の辺の長さの比から, Wy: mg =√3:2 2W²=√3mg /3 3 -+1) 2gh -=1.4m/s 斜面に垂直な方向のつりあいから, W, と物体がう ける垂直抗力の大きさは等しいので, 動摩擦係数を μ'として, 動摩擦力の大きさ F' は, √3 √3 F'=μ'W=μ'′xY -mg= μ'mg [N] 2 2 動摩擦力がした仕事の大きさは,物体が失った力学 的エネルギーに等しいので、 (1) の結果を用いて, -μmg×2h=12m(uj-v²2) +mgh 口知識 □ 133.粗い斜面上での力学的エネルギー 図のように, 水平とのなす角が30°の粗い斜面 上を質量 m[kg]の物体が,点Aから速さひ。 [m/s]ですべりおり, 点Bを速さ [m/s]で通 過した。 AB間の高さの差をん [m],重力加速 度の大きさをg[m/s2] とする。 (1) 点Aから点Bに移動する間, 物体が失っ た力学的エネルギーは何Jか。 (2) 物体と面との間の動摩擦係数はいくらか。 v [m/s] (2) 動摩擦係数μ' を求めよ。 130° v₁ [m/s] om B h〔m〕 m 133. ■知識 □134. 力学的エネルギーの変化 図のように,粗い水平面上で, ばね定数k のばねの一端を壁に固定し、 他端に質量m の物体をとりつけ, 軽い糸で物体を引いた。 ばねの伸びがxの位置で, 手をはなすと, 物体はxだけ動き, ばねが自然の (2) 長さの位置で静止した。 重力加速度の大きさをg とする。 (1) 手をはなしてから, 物体が静止するまでに摩擦力のする仕事Wを求めよ。 (1) (2) 134. (1) 思考 □135. 力学的エネルギーの変化 図のように,質量mの物体を, 水平面 から高さんのなめらかな斜面上から, 静かにすべらす。 物体は, 長さLの粗 L い水平面を通り過ぎ,同じ傾斜をもつなめらかな斜面上を, 高さまで上 がった。 重力加速度の大きさをgとして,次の各問に答えよ。 135. est 第 I (1) 運動とエ 基本問題 (2) (3) 摩擦力から、仕事をさ 分だけ、物体のもつ力学的 ルギーは変化する。

回答募集中 回答数: 0
物理 高校生

Ⅰ(1)について. ドップラーの式を使って解き,答もあたりましたが,疑問があります.問題文に"われわれから速さv[m/s]で遠ざかっている"とありますが,これは相対的な速度のことだと思います.そうすると,ドップラーの式:"f'={(V-v1)/(V-v2)}f"に当てはめ... 続きを読む

Ⅰ 宇宙には活動的中心核をもつ銀河が数多く知られている。 それらの中心部には小サイズで巨大質量の 天体があり、その周りを厚さの薄い分子ガス円盤が高速回転している姿が明らかになってきた。 比較的穏やかな渦巻き銀河M106 は, われわれの銀河から遠く離れていて, 数100km/s もの速さで 地球から後退している。その中心付近から放射されている水蒸気メーザー (波長 入 = 0.0135m) の電波 の観測が野辺山の電波望遠鏡で行われた。 その結果, 図1のようにこの銀河の後退運動によるドップラ 一効果でずれた波長 入 〔〕 付近に数個の強い電波ピークが観測された。 その波長域の最小波長 入 〔m〕, 中心波長 入 〔m〕, および最大波長袖 〔m〕 は -=0.0016, th No -=-0.0020, (19510円)*(30 で与えられることがわかった。 1 No ic 図 1 Ac-do Zo λ2-10 20 -=0.0052 水蒸気メーザーで 輝くスポット 回転 回転 分子ガス円盤 中心天体 図2 (1) 波長 〔m〕 の電波を放射する天体が, われわれから速さ 〔m/s] で遠ざかっているとき,われわ れが観測する波長が入[m] であるとする。 vを入, 入および光速 c を用いて表せ。 (2)c=3.0×10°m/s として, 図1の波長 A, Ac, A に対応するガス塊のわれわれに対する後退速度 ひ1, vc, v2 [m/s] を ] x10m/sの形で求めよ。 には小数第1位までの数字を入れよ。 (3) ひ-vc, |v-vel の値を求めよ。 TEX Ⅰ (3) より | ひ-vc|=|vz-vel となるが, この結果は複数の放射源 ( ガス塊)が全体の中心の周りを高 速回転していることを暗示している。 ⅡI 中心波長 Ac 付近で明るく輝く複数のガス塊の運動の時間変化が調べられた. その結果, これらのガ ス塊は中心から薄いドーナツ状分子ガス円盤の内側端までの距離 Ro=4.0×10m を半径とする円軌道 を一定の速さで回転しているとするとよく理解でき, その速さは Ⅰ (3) で求めたガス塊の後退速度の差 Vo(=|u-vc|=|02-vel) と一致することがわかった。 図2に回転する分子ガス円盤の概念図を示す。 ただし、 万有引力定数をG[N・m²/kg ] とする. (1) 質量M(kg) の中心天体の周りを質量のずっと小さい (m[kg]) ガス塊が半径R [m]の円周上を速さ V [m/s] で万有引力による円運動をしているとき, ガス塊の円運動の運動方程式を記せ。 ●解説 I (1),(2) 天体の出す電波の振動数をfo (=clio) とすると, 長さc+vの 中に fo波長分の振動が含まれるから 研究 λ=c+v_c+v., -.Ao fo (3) Ⅰ(2)の結果より 2-20 20 C この結果に、問題文で与えられた 入=入, Ac, i に対する (^-入o)/20 の値,および c=3.0×10°m/s をそれぞれ代入すると ひ=(-2.0×10-3)×(3.0×10°)= -6.0×10m/s ve=1.6×10-3)×(3.0×10°)=4.8×105m/s v2=(5.2×10-3)×(3.0×10°)=15.6×10m/s ドップラー効果◆ STEFON 波源が速さで後退すると,cの長さに含まれていた波がc+v の長さ に含まれることになって、波長が伸びる。(単泉) ところで, 図のように, ある点を中心に円運動をしている天体から出る 光 (電磁波)を十分に遠方から観測する場合, 中心天体の後退速度をv, ガ ス塊の円運動の速さをVとすると, 点a, c から出る光の後退速度はvc =v, bから出る光の後退速度は dから出る光の後退速度は V, v2v+V である。ゆえに V1-Ve=-V, #PED WAXXENT v2-vc=V となる。逆に,ひ-vc|=|v2-vel であれば,ガス塊の運動が円運動であることが暗示される。 なお、M106 の後退速度はせいぜい106m/s程度で,光速の1/100 以下であるから,相対論的なドップ ラー効果の式ではなく,普通のドップラー効果の式を用いてよい。 観測者 v-v b d V FV v+V a

回答募集中 回答数: 0
物理 高校生

オがわかりません. キ,クに関しては,Q1, Q2がr内に全て含まれているため理解しやすいですが,オはなぜQ2の方を無視して良いかがわかりません.コンデンサーの極板の時と同様に,電場は(1/2)としてはいけないですか? また,もし Q1が負電荷,Q2が正電荷 Q1が... 続きを読む

(A) 点Oに[C] の正の点電荷があり,さらに点を中心とした半 径α[m]の球面上にQ2〔C〕の正電荷が一様に分布している系を考 える (図3)。 点0から [m]の距離にある点Pの電界の強さE [V/m〕 は、点Oを中心とした半径r[m]の球面を通過する電気力 線の総本数Nから求めることができる。 すなわち, r<a のとき N = オとなるので,E=カであり, r>a のとき N= キとなるので,E=クである。 (B) 真空中に置かれた平行平板コンデンサーを考える。 Q [C] の正電 荷が一様に分布する極板を囲む直方体状の閉曲面A (図4)を通過す る電気力線の総本数Nは,Qを用いて表すと, ガウスの法則により 図2 TE ~閉曲面 (球面) 電荷Q2 [C] が球面の表面のみに 一様に分布している 図3 (A) オr<a の場合に, 点Oを中心とする半径rの球面の内部に存在す る電荷はQ1のみであるので,この球面を貫く電気力線の総本数Nは N=4rkQ₁ カオで考えた球面を貫く電気力線の総本数Nは, Eを用いて N=Ex4xr² とも表される. これがオで求めた値と等しいこと (ガウスの法則) より 4mkQ=Ex4mr² キ ra の場合に、点Oを中心とする半径rの球面の内部に存在する電 荷はQ+Q2 であるので, この球面を貫く電気力線の総本数Nは N=4wk (Q1+Qz) クキで考えた球面を貫く電気力線の総本数Nは, Eを用いて N=Ex4tr² M E=kQ₁ k p² とも表される。これがキで求めた値と等しいこと (ガウスの法則)より 4mk(Qi+Q2)=Ex4xr² :: E=kQ¹+Q₂ 7²

回答募集中 回答数: 0
物理 高校生

(3)のイの解説の波線部分が分かりません。 どこからlだけ長くなっているとわかるのか、どうやってこの式を出したのか教えて頂けると助かります。 

出題パターン 摩擦力を介した2物体の運動 図のように、 水平な床の上に質量Mの板Bがあり,その上に質量mの 物体Aが置かれている。 板Bと床との間には摩擦がないが, 板Bと物体A との間には摩擦がある。 静止摩擦係数をμlo, 動摩擦係数をμとし、重力加 速度の大きさを」 とする。 (i) 速さ A <DBのとき B J30 うまるち駅の条3 MAKSĀ BAGITARS ANUS Ara GENER A AN (1) 板 B に加える力FがFcより小さいとき, 物体 A と板Bは一緒に動く。 (ア)物体A の加速度はいくらか。 TOTESTI 垂直抗力N ml (イ)このとき,物体Aが板 B から受ける力のx成分はいくらか。 (2) 板Bに加える力Fを大きくしていって, 物体Aが板Bの上をすべり 出そうとするとき, 物体Aが板 B から受ける x 方向の力はいくらか。 ま た板Bに加える力F (この力がF)はいくらか。 (3) 板 B に加える力F が Fc より大きいとき,床に対する物体 A, 板 B の 加速度をそれぞれα βとする。 KO (ア)物体A板Bの運動方程式は, それぞれどうなるか。 (イ)物体Aが板Bの上を距離だけ動いて, 板Bの端に到達するまでに 要する時間はいくらか。 右へ行くな N M →DA 解答のポイント! ats “よく出る”「こすれあう2物体間に働く摩擦力Rの向き」について 図3-3 ように考えてみると, 1KO ISTR 13151S (i) BがAよりも右へいってしまうのを防ぐ向き ( ) AがBよりも右へいってしまうのを防ぐ向き になっている。つまり、摩擦力の向きはいつでも「ずれを防ぐ向き」としてシン HHOU. プルに判定することができる。 ち入り回す DB B 大 右へ行くな B 図3-3 (ii) 速さのとき A AN 6 NV R VA UB

回答募集中 回答数: 0