学年

教科

質問の種類

物理 高校生

このマイナスはなぜついているのですか?

必解 148. <原子核> 原子核の性質に関連する次の問いに答えよ。 質量数 A,原子番号Zの不安定な原子核Xが原子核Yにα崩壊した。 初め原子核Xは静止 していた。原子核 X, Y, α 粒子の質量をそれぞれ Mo, M, m とする。 ただし, Mo> Mi+m である。また,真空中の光の速さをcとせよ。 (1) このα崩壊で発生する運動エネルギーを求めよ。 (2) α粒子の運動エネルギーを求めよ。 (3)α崩壊でつくられる運動エネルギーKのα粒子を金箔 (Au) に大量に当てたところ,α 粒子の大部分は金箔を素通りして直進したが、 ごく一部は Au 原子核に散乱された。α粒 子は Au 原子核に比べ十分に軽く, Au原子核はα粒子を散乱するときに動かないものとす る。α 粒子と Au 原子核が最も近づいたときの距離を求めよ。 ただし,電気素量を e, 静 電気力に関するクーロンの法則の定数をん とせよ。 また, 初めα 粒子は Au 原子核から十 分に離れていたので, そのときの無限遠点を基準にした静電気力による位置エネルギーは 0 とみなすものとする。 天然の放射性元素ウラン 288U, ウラン23Uは放射性崩壊する。 (4) 292U 原子核がn回のα崩壊とん回のβ崩壊を経て, ラジウム Ra が生じた。 n とんを求 めよ。 (5)23Uの半減期を 7.5×106 年, 2Uの半減期を4.5 × 10 年とする。 現在, 地上における 28Uと282Uの天然の存在比は1:140 である。 4.5×10 年前の存在比を求めよ。 (6)292U 原子核1個が遅い中性子との衝突により核分裂するとき, 2.0×10℃eVのエネルギ ーを放出するものとする。 毎秒1.1×10-7kgの2U が核分裂するとき, 1秒間に放出され るエネルギーをJ (ジュール)単位で求めよ。 ただし, 電気素量 e=1.6×10-19C, アボガド [19 大阪市大〕 ロ定数 NA=6.0×1023/mol, 28Uの1mol当たりの質量を235g とする。

回答募集中 回答数: 0
物理 高校生

高知大学の過去問です。 画像の問2の答えの出し方が分かりません。 運動量保存則と反発係数の式は立てれましたが、そこから答えにたどりつけません。どうやって解くのでしょうか。 至急教えて頂きたいです。

2023年度 高知大 1 図1に示すような。 滑らかな面 AB, CE を有する台上における物体の運動について考える。 AD 間は水平面, DE 間の形状は鉛直に直径2R[m] を有する半円である。 また, 長さ L[m] の区 BCは粗い面となっている。 はじめに 点Aにばね定数k [N/m)のばねの一端を台に固定し, 他端に質量 M [kg] の物体a を取り付け. ばねが自然長の状態で物体に接するように質量m[kg] の物体b (m <M)を置いた。 物体 a, b の大きさ, ばねの質量 空気抵抗は無視できるものとす る。また物体と物体bの間のはねかえり係数をe. 物体b と面BCの間の動摩擦係数をμ 重力加速度の大きさを〔m/s*〕とする。 このとき,計算過程を含めて、 以下の問いに答えよ。 (70点) 1.図2に示すように物体a を左に押してばねを d[m]だけ縮め、静かに手を離した。この時 物体 b に衝突する直前 (図3)の物体の速さ Vo [m/s] を 求めよ。 2. 物体が物体bに衝突した直後(図4) における それぞれの速さ V [m/s] [m/s] を求めよ。 図1 L 2R A B CD 図2 wwo KI 図3 V₁ www 3. 衝突直後に物体は AB間で単振動を始めた。 その振幅 X (m) を求めよ。 図4 V₁ 01 wwG 問1, ばねの弾性力による位置エネルギーと 運動エネルギーは等しいので Vo' = M d² Vo=dJ [m/s] 問2.物体a,bについて運動量保存則より MV=MV1+mvi 反発係数の式より、 V₁-V evo -evo=サーV1 4. 物体は回転せずに区間 BCを通過した。 区間 BCを通過後(図5)の物体bの速さ102 [m/s] を求 めよ。 図5 5. 物体b は区間DEを面から離れずに通過した (図6)。 このときに,点Eを通過する際の速さ [m/s] が満たすべき条件を示せ。 また、その条 件を満たすの最小値を求めよ。 図6 www 6. 物体bが点Eを通過する瞬間に ばねが最も伸びたとする。 そして 物体 b が水平面 AD 着したときに物体がちょうど1往復した。 そのときのkをR,M を含む形で求めよ。 問1,Vo= d [m/s] 問2、V= M-em d JE m+M (1+e)d M m+M [m/s] [m/s] 問5V3≧JOR [m/s] 12の最小値 [SgR [m/s] 問6,b=gM [N/m]

解決済み 回答数: 1
物理 高校生

気体が真空へ膨張するときなぜ仕事をしないとなるのでしょうか

図のように,栓Cが付いた細い管でつながれた二つの円筒容器 A, B がある。左の 容器 A の体積は Vo で, 右の容器 B には, なめらかに動く断面積Sのピストンが取り 付けられている。はじめ,栓Cは閉じられており,容器 A には絶対温度 To で外部と 同じ圧力 Poの気体が入っている。また, 容器Bの内部は真空であり, 体積が夢とな るようにピストンが固定されている。 ただし, 円筒容器,栓,ピストンは熱を通さ ず, 細い管の体積は無視してよいものとする。 O 0 ピストン製 S 容器 A 栓C 容器B (断面積) C Vo, To, Po Vo 1/2 真空 Poえなけれ 問1 ピストンの位置を保ったまま栓Cを開くと, 気体が容器 A, B 全体に一様に広 がった。この過程に関する記述として正しいものを二つ選べ。原千代千葉華 ① 気体は外部に対して仕事をせず, 気体の圧力は減少した。 間 Vq .> ② 気体は外部に対して仕事をせず, 気体の圧力は変化しない。 気体は外部に対して仕事をせず,気体の圧力は変化しない。標 ③ 気体は外部に対して仕事をし, 気体の圧力は減少した。 ④ 気体は外部に対して仕事をし, 気体の圧力は変化しない。 2 ⑤ 気体の温度は 1 To に下がる。 0EST @ ⑥ 気体の温度はTのまま変化しない。 3 2 ⑦ 気体の温度はTに上がる。 シリンダー ocea 083 Q 068 0

回答募集中 回答数: 0
物理 高校生

2枚目の画像についてなんですが、C1の方を上を-Q1"、下を+Q1"としてやったんですがどうしても-になってしまいます。これはマイナスであってるんですか??なんか、一回目の作業の時とあんまり条件が変わらないのに変わるのが納得いかなくて、、 もし、V1がマイナスでQ1は上が+... 続きを読む

Date <コンデンサー> コンデンサーの切り替え 次の回路において、最初のコンデンサーは充電されておらず、S1 を閉じて、十分時間が経過した。 の後、S1 を開き、S2 を閉じた。そして十分に時間が過ぎたとき、S2を開いた。 この作業を繰り返し たとき C2 の電位差はいくらか。 また、この作業を繰り返したとき C2 の電位差はある値に収束して いくが、この値はいくらか。 Vo R C1(C) S₂ 2Vo R C₁₂(C) S.を閉じた時にたまる電気量Qは、 Q₁ = CVO 7", Vo Sを開き、S2を閉じ十分時間がすぎたときのC1C2に たまる電気量Q11Q2 とすると, Ho 電荷保存より Q1+Q2'=CVo-①. V₁ キルヒ 第2より 2Vo=-Vi'+Ve-2 12Vo また、電気量はそれぞれ. コンデンサーの解法のベース ⑩電荷保存の式(3) ②コンデンサーの数だけQ=CV ③もいくホック第2. で、スイッチ入前のエネルギーと ジュール熱とスイッチ後の保有の式 Q1の方は、 Itoi TQ - +カーか、どっちに帯か分か 深いので、仮定でおいてる。 Q1CVi', Q2'=CV2'一国 V2'V''+2Voより (本来) CV,'+C(Vi'+2vo)=CVo CV = -2 eu vi == Vo Ve = 2 Vo Q11=1/cvQ2=cveである K Vが一になった から、Qの符が -Q1 +Q₁" この操作をくり返すと、QはいつもCVで一定 の値を取る Vo c Vo 2vo Q1CV Sを開き、S2を閉じ十分時間がたったあと CVOに戻る C,Ceの電気量をQ,ごとすると、

解決済み 回答数: 1
物理 高校生

物理 132番の(ケ)について質問です (ケ)のときコイルの誘導起電力はi1の向きと同じなので符号は正と考えたのですが回答では負でした。なぜ負になるのかを教えてください🙏

抵抗 R O スイッチS に比べて増加するか、するがす (i) コイル2の長さを軸方向に押し縮めた後に、 同じ実験をした。 (i) 鉄心を引き抜いた後に、同じ実験をした。 132. 〈コイルを含む直流回路> 〔19 大阪府大 改 からの距離 (m) うう。 導体棒中 ■における電場 反時計回りに, 電力が生じる。 印b の向 ■に電流が流れ 図1の矢印 はたらくと考え である。 [15 同志社大 〕 次の文章のアコに当てはまる数式または数値を 答えよ。 また、サに当てはまる語句を答えよ。 h c L b Ix d f R 図に示すように抵抗とコイルをつないだ回路で, スイッ チSを閉じたり開いたりしたときに回路に流れる電流を考 えよう。 電池の起電力をE. コイルの自己インダクタンス L. 2つの抵抗の抵抗値は図のようにr, Rとする。 電池 と直列につながれた抵抗値の抵抗は電池の内部抵抗と考 えてもよい。 また, 導線およびコイルの電気抵抗は無視できるものとする。 a +r ch S E スイッチSを閉じた後のある時刻にコイル, 抵抗値Rの抵抗を図の矢印の向きに流れる電 流をそれぞれ I, と書くことにする。 このとき, 抵抗値の抵抗を流れる電流はア となる。 経路 abdfgha についてキルヒホッフの法則を適用すれば、 電池の起電力と回路に 流れる電流の間にはE=イの関係が成りたつ。 一方,このときコイルを流れる電流が 微小時間 4t の間に 4 だけ変化したとすると, 経路 abcegha についてキルヒホッフの法則 を適用すればE= ウ の関係が得られる。 スイッチSが開いていて回路に電流が流れていない状態でスイッチSを閉じたとき、その 直後に回路に流れる電流は, L=エ=オとなる。したがって、スイッチSを閉 じた直後にコイルに生じる誘導起電力の大きさはE, r, R を用いてカと表される。 方, スイッチを閉じてから十分に時間が経過した後にコイルに流れる電流は、ムキ であり,このときコイルにはクだけのエネルギーが蓄えられることになる。 to D

解決済み 回答数: 1