物理
高校生
解決済み

高知大学の過去問です。
画像の問2の答えの出し方が分かりません。
運動量保存則と反発係数の式は立てれましたが、そこから答えにたどりつけません。どうやって解くのでしょうか。
至急教えて頂きたいです。

2023年度 高知大 1 図1に示すような。 滑らかな面 AB, CE を有する台上における物体の運動について考える。 AD 間は水平面, DE 間の形状は鉛直に直径2R[m] を有する半円である。 また, 長さ L[m] の区 BCは粗い面となっている。 はじめに 点Aにばね定数k [N/m)のばねの一端を台に固定し, 他端に質量 M [kg] の物体a を取り付け. ばねが自然長の状態で物体に接するように質量m[kg] の物体b (m <M)を置いた。 物体 a, b の大きさ, ばねの質量 空気抵抗は無視できるものとす る。また物体と物体bの間のはねかえり係数をe. 物体b と面BCの間の動摩擦係数をμ 重力加速度の大きさを〔m/s*〕とする。 このとき,計算過程を含めて、 以下の問いに答えよ。 (70点) 1.図2に示すように物体a を左に押してばねを d[m]だけ縮め、静かに手を離した。この時 物体 b に衝突する直前 (図3)の物体の速さ Vo [m/s] を 求めよ。 2. 物体が物体bに衝突した直後(図4) における それぞれの速さ V [m/s] [m/s] を求めよ。 図1 L 2R A B CD 図2 wwo KI 図3 V₁ www 3. 衝突直後に物体は AB間で単振動を始めた。 その振幅 X (m) を求めよ。 図4 V₁ 01 wwG 問1, ばねの弾性力による位置エネルギーと 運動エネルギーは等しいので Vo' = M d² Vo=dJ [m/s] 問2.物体a,bについて運動量保存則より MV=MV1+mvi 反発係数の式より、 V₁-V evo -evo=サーV1 4. 物体は回転せずに区間 BCを通過した。 区間 BCを通過後(図5)の物体bの速さ102 [m/s] を求 めよ。 図5 5. 物体b は区間DEを面から離れずに通過した (図6)。 このときに,点Eを通過する際の速さ [m/s] が満たすべき条件を示せ。 また、その条 件を満たすの最小値を求めよ。 図6 www 6. 物体bが点Eを通過する瞬間に ばねが最も伸びたとする。 そして 物体 b が水平面 AD 着したときに物体がちょうど1往復した。 そのときのkをR,M を含む形で求めよ。 問1,Vo= d [m/s] 問2、V= M-em d JE m+M (1+e)d M m+M [m/s] [m/s] 問5V3≧JOR [m/s] 12の最小値 [SgR [m/s] 問6,b=gM [N/m]
運動量保存則 反発係数 運動

回答

疑問は解決しましたか?