学年

教科

質問の種類

物理 高校生

(2)の(オ)が何度解説読んでもわかりません、下線部引いた速度の話がよくわかりません お願いします

慶應義塾大-理工 (エ) 2022年度 物理 <解答> 43 斜面上では,質点には常に斜面下向きに mgsin30°の力がはたらく。 つまり、斜面下向きに見かけの重力加速度g' =gsin 30℃ がはたらいている L T=2π = 2π g' L gsin 30° とみなせる。よって、 求める周期をTとすれば,単振り子の公式から =2π (2)(オ) 90°のときの床面に対する三角柱の速度をVとすると, x軸方向 の運動量保存則から 2 gンデンサーの観 m(-vocos 30°) = (m+M) V :.V= √√3mvo 2(m+M) 08200nie ge="part また0=0°のときの三角柱から見た質点の速度の大きさを とすると, 質点の床面に対する速度の大きさは√2+V2であるので,力学的エネル ギー保存則および①から mvo +mgLsin.30°=12m(+V)+/12MBの 2 mvo+ mgL (m + M) V2 2 (m+){ m 1 1 2 1 2mvi 2 v22=vo2+gL- (m+M) √3mvo 2 (m + 10} 3mv.2 =vo²+gL- 4(m+M) =gL+ v₂ = √9L+ に m+4M 4(m+M) m+4M 4(m+M) 2 サーの電気容量は、間隔がのコン -(+)(S)- の誘電体を挟んだコンデンサーの 2 (0) (0) (0) Vo 0+0+0 Lsin 30° ・・ L m M 30° M x 30° (カ) 摩擦力は三角柱と質点の間の内力なので,x 軸方向の運動量は保存さ れる。よって、①と同じ速度になる。 . V=17 √3mvo 2(m+M) (3) 求める三角柱の加速度の大きさをα とする。 三角柱から見るとx

解決済み 回答数: 1
物理 高校生

この問題の解き方が下の解説を読んでも理解が出来ません💦 教えてください。よろしくお願いします。

空気の抵抗は JK=0 U=mgh 例題2 ばねと力学的エネルギーの保存 軽いばねの一端を天井に固定し, 他端に質量mの物体をつるすと, ばねは自然長からだけ伸びてつり合った。 この物体を, ばねの自然長の位置まで手で持ち上げて、静かに手をはなした。 重力加速度の大きさをgとし, 重力による位置エネルギー の基準面は、ばねの自然長の位置にとるものとする。 (1)このばねのばね定数を求めよ。 (2)ばねの自然長からの伸びがxになる点を通過するときの物体の速さがであるとする。このときと手をはなした直後で, 力学的エネルギーは保存される。 力学的エネルギー保存の式を書け。 (3)つり合いの位置を通過するときの物体の速さを求めよ。 (4) 物体が最下点に達するときのばねの伸びを求めよ。 解説 (1)このばねのばね定数をkとすると,図のBのときの 物体にはたらく力のつり合いより, B mg mg = kl よって,k= -12 mul = 0 になるため (2)図のAとCについて考え,k= 0+0+0= 1 2 m² mỏ – mgx + (3) 図のCについて, x=1として,(2)の式に代入すると, mgを を代入すると, 0000000 自然長 0 mg x² 21 K=0 つり合いの U = 0 + 0 位置 kl 00000000 Beet K=1/2m02 U=-mgl+1/k12 CK=1/23 mv2 U= mgx+1/2/kx2 0=1/2m² -mv²- mgl + -mgl 2 Vo mg x さは基準 となる。 v>0, v=√gl (4)図のDについて,求めるばねの伸びをひとすると, 最下点でv = 0 だから,(2)の式に代入すると, 最下点 K = 0 U= -mgl' + kl² 0 = - mgl' + mg_ 91,2 l' ≠ 0 だから, l'=21 21

未解決 回答数: 0
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0
物理 高校生

202の(3)を教えてください。(2)と同じになると思いました。

こり、 という. 分子内部での電子 より電荷のかた この現象を利用している.また, (3) )のかたよりによってお 200 (クーロンの法則) 次の問いに答えよ. クーロンの法則の比例定数はk=9.0×10N・m²/C2 とする. (1) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cを3.0m離しておくときの静電気力の大きさ は何N か. 20×10-12 12×1.3×101 1.8×10-2N (2) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cの間に0.20Nの力がはたらいた. 点電荷 間の距離は何か。 =9.0×109.3.0×106×6.0×10%= 390x 10'm 3点電荷71=3.0×10 °Cと点電荷g2 を 1.0m離しておいたら270-Nの力がはたらい た点電荷Q2の電気量は何Cか. 9.0×104×3.6×106Q2=27×10-3 H Q2 28×6-3 9.5×10°×3×107 練習問題 A 201(クーロンの法則)+3.0×10 C, -1.0×10-Cの電荷をもつ同じ大きさの2つの小さな 金属球が0.30m離れた位置におかれている。 クーロンの法則の比例定数を9.0×10°N・m²/C2 とする. (1) 2球が互いに及ぼしあう力の大きさは何Nか、またそれは引力か斥力か. 次に2球をいったん接触させた後,再び 0.30m離した. (2) 各球のもつ電荷はそれぞれ何Cか. (3)このとき、2球が互いに及ぼしあう力の大きさは何Nか.またそれは引力か斥力か. 202. (静電誘導と誘電分極) 材質と大きさが同じで、電荷をもっていない2つの金属球A,Bに 帯電体Cを近づけて, 図のように次の順に操作をするとき, 金属球の表面に現れる電荷の分布を 図に示せ. C A B (1) 接触しているA,BのAに負の帯電体Cを近づける. (2) Cを近づけたまま, AとBを少し離す. (3)(2)の状態から Cを十分遠くに離す. B (2) (4)(3)の状態から, A, B を十分遠くに離す. A B A,Bを不導体(誘電体)でできた球D,Eにかえて, (3) 上の(1)~(3)と同じ操作を行う. B (5) (3)のとき,D,Eの表面に現れる電荷はどうなるか. (4) 文章で答えよ.

回答募集中 回答数: 0
物理 高校生

(f)なのですが、Iが正なのを考慮していると思うのですが、各電圧の正負がいまいちわかりません。詳しく解説お願いします。

東京工業大 東京工業大 問題 25 27 ロックどうし及び も傾くことはな =4の場合のみ T" 壁 2 (50点) 図1のように,長さの導線ab, cd と長さlの導線bc を直角につないで 作ったコの字形の導線 X を,水平に固定された直線状の導線Yにつり下げて 作った長方形の回路 abcd を考える。 Yの区間 adの一部は電池, 抵抗器, コイ ルスイッチで作った装置Zで置き換えることができ, Yの両端は絶縁されて いる。XはYを軸に滑らかに回転できるが, 平行移動や変形をしないものとす る。なお, YとZは動かない。 ab, cdの質量は無視でき, bcの質量はmであ り、重力加速度の大きさをとする。 また、磁束密度の大きさがBである鉛直 上向きの磁場が一様に存在している。 導線の太さと電気抵抗, コイル以外の自己 インダクタンス, 電池の内部抵抗, 空気抵抗はすべて無視できるものとする。 回路を流れる電流の正の向きをa→b c d と定める。また,aを通る鉛直 方向の直線と abがなす角を0とし,a から bに向かう向きが鉛直下向きのとき =0であり,ab→c→dの向きに回る右ねじが進む向きを正の向き と定める。さらに,Xの角速度をωとし, 微小な時間 At の間に が △0 だけ変 である。 化するとき,ω= も静止したまま At Asstod 9 を用いて表せ。 の大きさを, つなぐ糸の張力 Mがある値 M min 巨囲でどのように は 0 の値によっ Y d Z A AB a b m C X 図1 [A]図2のように、電圧Vの電池,抵抗値Rの抵抗器 スイッチSを使って 作 adの一部を置き換える。 スイッチをp側に入れると抵抗器のみ 2024年度 前期日程 物理 2024年度 前期日程 物理

回答募集中 回答数: 0
物理 高校生

・(4)の二枚目の写真のオレンジの波線で引いてあるところで⊿Rがたされるのは問題文の⊿R/R=k•⊿L/Lの条件があるからですか? ・(5)で二枚目の写真の「流れる電流が抵抗値に反比例する。よって電流の大きさはR/R倍になる」のところがなぜそうなるのか分かりません。 ・(6... 続きを読む

設問(4) 図3のように、可変抵抗 Y, 抵抗値が の抵抗 Ri.抵抗値が 5 r の抵抗 R2 電 圧計 ① そして電池を用いた回路に抵抗体Xを組み込む。 抵抗体 X が変形す る前の状態 (長さL, 抵抗値R)では,可変抵抗Yの抵抗値が のとき,電圧計 ①の指示値が0であった。抵抗体Xの長さをだけ伸ばしたときは、可愛 抵抗 Yの抵抗値を ⊿r だけ増加させたときに電圧計の指示値が0になった。 抵抗体Xの伸びAL と抵抗値の増加 4R との間にはんを定数として ARov AR AL =k- の関係が成立するものとして, 4L を R. Ark, L を用いて表せ。 R L 設問(6) 図3における抵抗体 Xと可変抵抗Yを抵抗R』 と抵抗R, に取り換え,電流計 A を接続して図4の回路を組んだ。 このとき, 電流計 A の指示値は 0.15A で、電圧計の指示値は30V (点a に対する点bの電位)であった。 抵抗 R1 の抵抗値は400Ω で, 抵抗 R』 の抵抗値は2600Ω, 抵抗 R2 と抵抗 R の抵抗値 は共に1000Ωである。 電圧計 の内部抵抗を1000Ωとして,この回路の点 cd 間の電位差を求めよ。 (x) R₁ r 図3 b a R2 d 価 設問 (5) 設問 (4)において, 点cd間の電圧は変化しないものとする。 電圧計の指示値 が0になるとき, 抵抗体 Xに流れている電流の大きさは,抵抗体が変形する前 と比べて変形した後では何倍になっているか。 また, 抵抗体 X における消費電 力は,抵抗体が変形する前と比べて変形した後では何倍になっているか。 変形 する前の抵抗体 X の抵抗値を R, 変形後の抵抗値をR' とし,それぞれをRと R' を用いて表せ。 0.15 c. 2600 Ra ⑩30V 全1000 d R₁ 40% h 図 4 R₂ 1000 f

解決済み 回答数: 2