学年

教科

質問の種類

物理 高校生

⚪︎11は有効数字を気にしていないのは何故ですか

などの は平均を表す。 」 は, その次に書く物理量の変化分を表す。 ①平均の加速度 x軸上を正の向きに進む物体が,ある時刻に点Pを速さ8m/sで 通過し, それから 3.5 s 後に点Qを15m/sの速さで通過した。 PQ 間の平均の加 速度の大きさは何m/s2 か。 回 平均の加速度 東向きに12m/sの速さで進んでいた物体が, その3s後に西向き に6m/sの速さになった。 物体の平均の加速度の向きと大きさを求めよ。 9 1等加速度直線運動 次の等加速度直線運動をする物体の加速度の大きさは, それぞ れ何m/s2 か。 (1) 静止していた物体が, 動き出してから 5.0s後に速さが20m/sになった。 (2)静止していた物体が動き出してから 4.0s間に12m進んだ。 (3)静止していた物体が動き出してから8.0m進んだところで速さが 4.0m/s になった。 10 ①4等加速度直線運動 一直線上を3.0m/sの速さで動いている物体が,一定の加速度 0.80m/s' で加速した。 加速し始めてから5.0s 後の速さは何m/sか。 [10] 15 等加速度直線運動 一直線上を2.0m/sの速さで動いている物体が,一定の加速度 4.0m/sで加速した。 加速し始めた位置から12m進むのに要する時間は何sか。 10 ③186m/2 陰 1m/s は,ヒトの歩 例題 1 直線運動 右の2つのグ A. B の運動の 刻を横軸にそれ (1) Aは時刻 2 通過する。 そ また 時刻 よ。 グラフ (2) Bはどの (3)Bの運動 [s] とする。 16等加速度直線運動 一直線上を10m/sの速さで走っている車が一定の加速度で加 速し,25m 進んだところで15m/sの速さになった。 加速度の大きさは何m/s2 か。 10 ① 等加速度直線運動のグラフ x軸上を,右のひtグラフで表 されるような運動をする物体がある。 (1) 物体の加速度の大きさは何m/s2 か。 v [m/s] 4.0 2.0 (2) 時刻t=0〔s〕に位置x=0[m] を通過したとすると, 時刻 t=5.0[s] における位置は何mか。 -t(s) O 5.0 アドバイス 速度の ① 変位,速度, 加速度 25.0m/s ③18km/h 5.0m/s ④AからBの向きに 1.8m/s 南東の向きに1.4m/s' ⑤成分:1.7m/sy成分:1.0m/s 60.4m/s,2.0m/s ③ 5m/s 25m/s 96.0.9.6m10 (1) 2m/s (2)8m 75.0m/s 112m/s2 12 西向きに6m/s2 (1)4.0 m/s² (2) 1.5 m/s² (3) 1.0 m/s² 7.0 m/s 2.0s 2.5 m/s² 17(1) 0.40 m/s² (2) 15 m 問題 未知・ 等加速 ・初め 正の v, c の向 12 第Ⅰ部 様々な運動

解決済み 回答数: 1
物理 高校生

(2)の問題がわかりません。 2枚目写真が私の回答なのですが、考え方が違うと思います。 どこが間違っているか教えていただきたいです。 なぜ経路差が1だと二分のλになるのでしょうか? よろしくお願いします🙇‍♀️

20 例題 3 音の干渉 動かし, 波形の振幅の変化を調べよう。 15 図のように、 2つのスピーカー A, B が, 同位相 で振動数 1.7 × 102Hzの音を出している。 音の速 さを 3.4 × 102m/s とする。 ■ A 3.0m (1)音の波長 [m] を求めよ。 B (2) 点Pは,音が強めあう点か, 弱めあう点か。 4.0m 指針 (2) 2つのスピーカーは同位相の音を出すので,距離の差 AP-BP| が 「波長の整数倍」 のときは強めあう点、 「波長の整数倍+半波長」 のときは弱めあう点になる。 解 (1) 「v=fi」 (p.141 (1) 式) より 3.4 × 102 = (1.7 × 102 ) × à よって 1=2.0m (2) 問題の図より BP = 4.0m また, 三平方の定理より AP = √3.02 + 4.0° = 5.0m よって |AP-BP|=1.0m=14121 ゆえに、点Pでは,スピーカー A, B からの距離の差が 「波長の整数倍 +半波長」になり、 音波が逆位相で重なりあうので、 弱めあう点となる。 類題 3 図のように、2つのスピーカー A,Bが, 逆位相 A T で振動数 8.5×10°Hzの音を出している。 音の速 1.0m B さを3.4×10m/s とする。 点Pは, 音が強めあ...... 2.4m

解決済み 回答数: 1
物理 高校生

このページの全問の解説が欲しいです🙏

<大問3> x軸上を等加速度運動する物体について考える。 速度, 加速度の向きはx軸の正の向きを 正の向きとして、以下の間に答えよ。 (E) この物体が時刻t=0 に x=0を速度 4 [m/s] で通過し, 3 [s] 後に速度が 10 [m/s] になっ た場合。 (1) 物体の加速度を求めよ。 B (2) t=3 [s] での位置を求めよ。 (3)この物体がx=12 [m] を通過するときの速度を求めよ。 次に,この物体が t=0にx=0を速度4 [m/s] で通過し、4[s] 後に速度が-12 [m/s] に なった場合。 (1) [er] (4) 物体の加速度を求めよ。 (5)この物体の速度が,正から負に変わる時刻を求めよ。 (6)この物体が再び原点を通過する時刻を求めよ。 (a\m] <大問4> [e\m] 図1のように,x軸上を 運動する物体があり、時刻で の速度vが図2で表される。 時刻 t =0での物体の位置を原 点 x=0 とする。 v[m/s] 0 x(m) 図1 v[m/s] (1) 時刻t=2sにおける物体の 加速度αは (ア) m/s" であ り 時刻 t = 6sでの加速度 α は (イ) [m/s' であり、 時刻 16 図2 8 0 7 15 t(s) t=11sでの加速度αは (ウ) m/s である。 (2) 時刻 t = 6s における物体の位置 x は (エ) mである。 (3) 物体が原点x=0から右に最も離れる時刻は (オ)であり、 そ の位置 x は (カ) である。 (4) 時刻 t = 15s以後も,そのまま運動を続けた場合, 物体が再び原点 に戻ってくる時刻は (キ) sであり、そのときの速度vは(ク) m/sである。 3 8 (5)

回答募集中 回答数: 0