学年

教科

質問の種類

物理 高校生

305の問題の(2)がよく分かりません。特に解説の赤線で引いてるところが理解できません。(1)と(2)っておんさが直角になるだけでそんなに変わるものなんですか?教えて欲しいですm(_ _)m

きるものとし、重力加速度の大きさを9.8m/s とする。 また、弦を伝わる波の速さ [m/s] は, 張力の大きさ を S[N],線密度を p[kg/m] とすると, (1) 弦を伝わる波の波長 [m] を求めよ。 (2) 弦を伝わる波の速さ [m/s] を求めよ。 (3) このときの振動子Pの振動数f [Hz] を求めよ。 と表されるものとする。 305 おんさと弦の共振知 図1に示すように,おんさ の振動部Aに糸の一端をつけ、滑車を通して他端におもり をつるした。おんさの振動数は60Hz, AB間の糸の長さ は 2.0mである。 おんさを振動させたところ,腹が6個の 定在波ができた。 2.0kg 例題 57,313,314 2.0m A B 60Hz 図 1 おもり -2.0m (1) 糸を伝わる波の速さ [m/s] を求めよ。 UA B (2) (1)で,おんさと糸との関係を、 図2のように変えたと きできる定在波の腹の数はいくつか。 例題 57 図2 作図 306 気柱の振動知 長さが 0.60m の閉管内の気柱があ る振動数の音で共鳴した。 このとき,管の底以外に定在波 の節が1か所あった。 音の速さを3.4×10°m/sとし、 開口 端補正は無視する。 0.60 m (1) 閉管内にできる定在波のようすを図示せよ。 (2) 気柱内の音波の波長は何mか。 (3) 気柱内の音波の振動数fは何Hz か。 例題 58 ・気柱の共 OB の管口か (1)この音 (2) この (3) 位置 (4) ピス 310 して 管の 長さ 補工 (1) (2) とき (3

解決済み 回答数: 1
物理 高校生

黄色マーカーのところなんで-gなのですか?

x 解説動画 発展問題 48, 52 発展例題5 斜面への斜方投射 物理 Vo 図のように、傾斜角 0 の斜面上の点0 から, 斜面と垂直な 向きに小球を初速 で投げ出したところ, 小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 答え 0 OP (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 思考 44.2 球 達した た。 こ 小球日 t=0, とし 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 1 0=vot₂-9 coso.tz² (1) (2) (4) 0=t Vo 解説 200 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる(図)。重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 20から, t2= gcoso gsino 45. -gcose, g ら, OP間の距離 xは, P x= x方向の運動に着目すると, x= -gsinO・2 か -129sin0-13-12 gsing-(20)* げ gcoso x成分: gsin y 成分:-gcosd 方向の運動に着目する。 小球が斜面から最も はなれるとき,方向の速度成分 vy が 0 となる。 求める時間をとすると, vy=vo-gcoso・t の式から, Point 2vtan0 gcose m ( 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0から方向 の最高点に達するまでの時間と,最高点から再 びy=0に達するまでの時間は等しく, (D) 4 0=vo-gcoso・t t₁ = Vo gcoso (2) Py=0の点であり, 落下するまでの時間 t2=2tとしてtを求めることもできる。 を友として,「y=vot-1/12gcost・12」の式から、 発展問題 [知識] A 43. 投げ上げと自由落下 図のように,高さ19.6mのビルの 屋上から 小球Aを真上に速さ14.7m/s で投げ上げた。 小球 Aは,投げ上げた地点を通過して地面に達した。 重力加速度の 大きさを 9.8m/s2 として, 次の各問に答えよ。 14.7m/s A B (1) 小球Aが地面に達するのは,投げ上げてから何s後か。 19.6m

解決済み 回答数: 1
物理 高校生

この問題の(3)の後半についてで、解答には力学エネルギーが保存すると書いてあるのですが、保存する理由は、小球と台が受けてる保存力以外の力は、台がストッパーSから受けてる力のみで、ストッパーは動かないのでF【N】×0【m】=0【J】より、仕事をしていないので、小球と台のに物体... 続きを読む

17 曲面AB と突起 Wからなる質量 Mの台が水平な床上にあり,台の左 側は床に固定されたストッパー S に 接している。 Bの近くは水平面とな っていて,そこからんだけ高い位置 にあるA点で質量m(m <M) の小 A 小球 m h 台 S M W B 床 床 39 球を静かに放した。 小球は曲面を滑り降りて突起 Wに弾性衝突し,台 はSから離れ,小球は曲面を逆方向に上り始めた。台や床の摩擦はな 重力加速度を①とする。 突起 Wと衝突する直前の小球の速さはいくらか。 小球がWと衝突した直後の, 小球と台の速さはそれぞれいくらか。 (3) 小球が曲面を上り,最高点に達したときの台の速さはいくらか。 また,最高点の高さ(Bからの高さ)はいくらか。 次に,ストッパーSをはずして, 台が静止した状態で,小球をA点 で静かに放す。Ins Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 Wとの衝突後, 小球が達する最高点の高さはいくらか。 (東京電機大+日本大)

解決済み 回答数: 1
物理 高校生

(2)で9.8t=20を計算してt=2.04816...で有効数字から2.0sになることはいいんですが、(3)で2.04を使って計算していて今回みたいに割り切れなくて次の問題で使うって時どこまで値をとるんですか? 教えてください わかりにくかったら申し訳ないです

① 基本例題7 斜方投射 物理 高 基本問題 41,42 水平な地面から, 水平とのなす角が30° の向きに 速さ 40m/sで小球を打ち上げた。 図のようにx軸, 軸をとり、重力加速度の大きさを 9.8m/s2 として 次の各問に答えよ。を求め、 y 40m/s 30° 地面 x (1) 打ち上げてから0.20s 後の速度の成分 成分と, 位置のx座標, y 座標を求めよ。 (2) 打ち上げてから最高点に達するまでの時間を求めよ。 (3) 地面に達したときの水平到達距離を求めよ。 指針 小球は, x方向には速さ 40cos 30% m/sの等速直線運動をし, 夕方向には初速度 40sin 30°m/s の鉛直投げ上げと同じ運動をする。 最高点に達したとき, 小球の速度の鉛直成分は であり, 打ち上げてから地面に達するまでの時間 は、最高点に達するまでの時間の2倍となる。 「解説」 (1) 速度のx成分,成分は, √3 ひx=40cos30°=40x =20√3 2 =20×1.73=34.6m/s 35m/s Min v=vosino-gt=40sin30°-9.8×0.20 =40x- 12-1.96=18.0m/s 18m/s 位置のx座標, y 座標は, d x=vxt=34.6×0.20=6.92m 6.9m y=vesindt- 2 912 ×9.8×0.202 =40sin30°×0.20-12× =3.80m 3.8m (2) 求める時間は,v=0 となるときであり, v=vosine-gt」から, 0=40sin30°-9.8xt t=2.04s 2.0s (3) 水平方向には等速直線運動をし、地面に達 するまでに (2) で求めた時間の2倍かかるので、 x=vxt=34.6×(2.04×2)=141m 1.4×10m

解決済み 回答数: 1
物理 高校生

物理基礎の問題です! 類題の(4)を教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

例題① 電熱線による発熱 1kWh=10Wh=3.6×10J 3.6×10³ J ある長さの電熱線に100Vの電圧をかけると, 消費電力が400W であった。 次の問いに有効数字2桁で答えよ。 ただし, 電熱線の単位長さあたりの抵抗値 は変わらないものとする。 (1) 電熱線には何Aの電流が流れるか。 (3) (2)電熱線の抵抗値は何Ωか。 かかるか。 ただし, 電熱線の発熱量の30%は周りに逃げるものとし, 水の この電熱線を用いて, 16℃の水300gをあたためて100℃にするには何s 比熱は 4.2J/ (g・K) とする。 Gato 指針 (3) 水が得た熱量は, 電熱線で発生したジュール熱の70%に等しい。 解 (1) 電熱線に流れる電流をI [A] とすると,「P=VI」より、 400 W 400W =100 VXI よって, I= p.199式(7) =4.0A 100V p.192式(3) (2) 電熱線の抵抗値を R [Ω] とすると, オームの法則 「V=RI」 より (3)かかる時間を [s] とすると,「Q=Pt」 と 「Q=mcAT」 より, 100V よって, R= 100V=R×4.0A =25Ω 4.0 A p.125式(3) よって, t=3.78×10°s≒3.8×10's 84- p.199式(8) 400Wxtx0.70=300g×4.2J/(g・K)×(100-16) K 類題1 例題①の電熱線を、 元の80%の長さに切って, 100Vの電圧をかけた。次の 問いに有効数字2桁で答えよ。 (1) 電熱線の抵抗値は何Ωになるか。 (2) 電熱線には何Aの電流が流れるか。 (3)このときの電熱線の消費電力は何Wになるか。 (4) 例題1の(3)と同じようにして水をあたためたとき, かかる時間は元の何倍か。 20

解決済み 回答数: 1
物理 高校生

この問題の4番について質問です。振動数はおもりの重さによっては変わらないとあるのですが,なぜですか? おもりの数が多いほど,弦が張ることになるので,音が高くなると思ってました。(ギターみたいな感じで)

(3) Hz である。 また, a=35cm をそのままにし, おもりを4倍に増やし たとき, 弦は共振しなくなった。 弦を再び共振させるには,Bを 少なくとも (4) cm 右に移動しなければならない。 64 弦の共振 全体の長さが120cm 質量 1.8g の弦の右端に滑車を通して質量 6 kgのおもりをつるし,振動源Sによって弦を振動させる。 この弦は, コマBを動かすことにより任意の一点を固定できる。 弦の張力はどこ も同じで,振動する AB間の距離をα, 重力加速度を10m/s2とする。 問1 コマBを適当に動かすと, a= 30cmで弦が共振する。 さらにB を右に移動していくと, a=35cm で再び弦が共振する。 したがっ て,弦を伝わる横波の波長は (1) cmであり,このときのAB 間の腹の数は (2) 1個である。 またSの振動数は (1) 振動数 fと波の速さが変わっていないの で、波長も変わっていない。 Aが節で今こ とに節があるから, Aから30cmの範囲の定 常波の様子は同じこと。 そこで,Bを右へ だけ移せば再び共振する。よって .. 1 = 10 cm 5cm ごとに腹が1つずつあるから 35÷5=7個 B =35-30 2 2 2 (2) 2 (3)密度は p = 1.8×10-3 120×10-2 B< [kg] と [m〕 を - = 1.5×10-3 kg/m 用いること v = mg P 6 × 10 V1.5×10-3=200m/s 2 もとの弦と同じ材質 同じ長さで, 直径が2倍の弦に張り替え て, αを30cmにし, おもりの質量を6kgに戻す。 このとき弦は 共振し, AB間の腹の数は (5) 個となる。 また, AB間の腹の 数を3個とするには, Sの振動数を (6) 200 v=fa より - f === 10 × 10-2 = 2000Hz (4) はじめはVP Img =fx.......① Hz とすればよい。 mを4倍にしたときの波長を とすると,fは< ①を見て,m を4 倍にすると A B 変わっていないから V p 4mg =fv.......② 2倍になると即断 したい。 S 中にス ② より 2= =24=21=20cm ① 1 (上智大) ・B' Level (1)~(4)★ (5),(6)★ Point & Hint 隔は (1) (2) 弦が共振するのは, 両端が節となる定常波ができるとき。 節と節の間 2 だから、弦の長さが1の整数倍に等しいとき,共振が起こる。 弦の長さが4=10cmの整数倍のとき共振するから、35cmより大き い次の値としては 40cm。よって,5cm 動かせばよい。 A 2 (5)直径を2倍にすると, 断面積が4倍になる から、密度も4倍になる。 波長を入とす ①からを4倍にす ③れば入は1/2倍と即 mg=fie ......③ 断できる。 ると V 40 この問題のような状況では,Sはおもりの重力 mg に より1=4 ∴ A2 = =5cm 2 12= cm ごとにあるから 30÷2=12個 は v [m/s] はv= (3) 弦の張力をS〔N〕, 線密度をp 〔kg/m〕 とすると, 弦を伝わる横波の速さ 等しい。

解決済み 回答数: 1