学年

教科

質問の種類

物理 高校生

3枚目の写真の緑のマーカーで囲った※Bの部分の言っていることが分からないので教えてほしいです。

64.〈ピストンで封じられた気体分子の運動〉 なめらかに動くピストンがついた容器内に質量mの単原子分子 からなる理想気体が封入されている。 ピストンおよび容器は断熱材 でできている。図に示すように x, y, z軸をとり, 容器の断面積は 一様であるとする。 次の問いに答えよ。 〔A〕 まず,ピストンが固定されており, ピストンの底部は容器の 底からんの距離にある場合を考える。 (1)容器内のある1個の気体分子を考え,そのz軸方向の速さを ひとする。分子がピストンに弾性衝突したときピストンが受 ける力積の大きさを求めよ。 (2) (1)において1個の分子がある時間 4t にピストンに衝突する回数を答えよ。 (3)(2)においてN個の分子によって 4tの間にピストンが受ける平均の力の大きさを答 えよ。ただし,気体分子全体のvzの2乗の平均 22 を用いよ。 〔B〕 次に,ピストンをz軸の負の向きにより十分に小さい一定の速さで押しこんだ 場合を考える。なお理想気体では, 内部エネルギーは各気体分子の運動エネルギーの総和 となる。 z軸方向の速さvz の1個の分子がピストンに弾性衝突した後の軸方向の分子の速さ vz を求めよ。 また,衝突前後の分子の運動エネルギーの変化量⊿u を答えよ。この際, 1± b b は十分小さいことより (10) = 0 という近似が成りたつことを用いよ。 Vz Vz Vz Vz (54)において⊿t の間のN個の分子の運動エネルギー変化の合計 4U を v22 を用いて答 えよ。 ただし, 4t の間のピストンの移動距離はんに比べて十分小さいものとする。 〔A〕のときの容器の体積を V,気体の温度を T, 内部エネルギーをひとおく。また, 4tの間の体積の変化を⊿V, 温度の変化を⊿T とする。 気体分子全体の速さ”の2乗 44 が成りたつこと の平均をとしたときが成りたつこと,また, U を用いて 4 を 4T, T を用いて表せ。 AV V 記 (7/3)で求めたを用いて、4tの間に気体がピストンにされた仕事⊿W を答えよ。 また, この結果を(5) と比較して,気体を断熱圧縮したとき,気体がされた仕事と運動エネルギ ーの関係について説明せよ。 [23 埼玉大改]

解決済み 回答数: 1
物理 高校生

なぜ右向きを正に運動方程式を立てるのかがわかりません 左に動くのになぜ左向きが正ではないのでしょうか?

(1) 図1のように質量の無視できるばねを鉛直につり下げる. 鉛直下向きを正としてy軸をと りばねが自然長であるときのばねの先端を原点とする. 大きさの無視できる質量mの物 体をばねの先端にとりつけると、位置y=I1-a で物体に働く重力とばねの復元方がつ り合い,物体は静止した.ただし,ばね定数を重力加速度の大きさを9とする。物体を下 方に引いて静かに手を離すと, 物体はy軸方向に y を中心とする単振動をはじめた.物体の 座標をy, 加速度をαy とすると, 運動方程式は I1-b と書ける. (2)次に図2のように、摩擦のある水平面上でばね定数kのばねの一端を固定し、他端に質量 mの物体をとりつける.物体の運動方向にx軸をとり ばねが自然長であるときの物体の位 置を原点Oにとる. 物体と水平面との間の静止摩擦係数!!.動摩擦係数は定数とする. こ こでは、物体の速さが0となるときは、物体に働く摩擦力として、最大で静止摩擦係数を用い た摩擦力が働くものとする. 位置x (0) まで物体を引いて静かに手を放すと, 物体はxがあ る値d以下のときには動かず,dより大きいときには滑り出した. dは I 2 と表される. 物体を位置xo(>d)まで引いて, 時刻 t = 0に静かに手を放すと物体は動き出し,位置 (0)ではじめて速さが0となった. この間の物体の運動方程式は、 物体の座標をx, 加速 度をα とすると. I3-a と書ける.この方程式を(1)の場合と比較すると, この運動は, I3-b を中心とする単振動である. x1 は x を用いて14-a と表される.x で物 体が静止し続けるためのxの最大値 Xは 14-b である. xc= 以下では,x > Xとする. 物体はx から再び動き出し, x2 ( d) で再び速さが0となっ また、この間の物体の運動方程式は I5-a と書け, x2 は x を用いて I5-b と表され る.その後,物体は再度 x2 から動き出したが, x(<0) で速さが0となり再び動き出すこと はなかった. 力学的エネルギーの変化が動摩擦力の行った仕事に等しいことを利用すると,x3 に達するまでに物体が運動した全行程の長さは, x0 と x3 を用いて 16-a と表すことがで きる。 物体の位置と時刻との関係をグラフで表すと図3の 16-b のようになる.

解決済み 回答数: 1
物理 高校生

高校物理の円運動の単元です。 (3)と(4) ともに軌道から受ける力の大きさを求めるのですが、なぜ(3)では運動方程式を用いたのに、(4)ではつりあいの式で求めるのでしょうか、!?😭

[知識 (1) C we (2)は (3)△ 221. くぼみを通過する小球 図のように, ABの間は鉛直, B→C→Dの間は点 O を中心とする半径の円周の一部, DE の間は水平面に対して角をなす斜面, E →Fの間は点Oを中心とする半径rの円 周の一部, FGの間は水平となっている なめらかな軌道がある。 また, 点BとEは 同じ高さである。 0, に対して高さんの点 (4) P A (5))(6) (6)5 F G 0₁ E B 0 D 02 C Aから,質量mの小球Pを自由落下させたところ,Pは軌道に沿って同じ鉛直面内を運 動した。 重力加速度の大きさをg として,次の各問に答えよ。 (1) Pが点Bを通過する瞬間の速さを求めよ。 (2) 点Cを通過する瞬間の, Pの運動エネルギーと速さをそれぞれ求めよ。 (3) 点Cで,Pが軌道から受ける力の大きさを求めよ。 (4)Pが点Dを通過した直後の速さを求めよ。 また、このとき,点DでPが軌道から受 ける力の大きさと, (3) で求めた点Cで受ける力の大きさの大小を比較せよ。 (5) 点Eを通過した直後に, Pが軌道からはなれないためのんの条件を, 0, h, r を用 いて表せ。 (6) 点Fを通過した直後に, Pが軌道から受ける力の大きさを求めよ。 ●ヒント (北里コ) 鉛 に

解決済み 回答数: 1
物理 高校生

(2)条件にV>0とありますが、なぜV=0は含まれないのか教えてください

遠心力に関係した身近なものとしては, 洗濯機や遊園地のループ式ジェットコースターなどがある。 例題 15 鉛直面内での円運動 右図のような, 半径[m〕のなめらかな円筒面に向 けて,質量m〔kg〕 の小物体を大きさvo [m/s] の初速 度でなめらかな水平面からすべらせる。 重力加速度の 大きさをg〔m/s'] とする。 53 58 62 B C 10 (1) 鉛直線となす角が0の点(図の点C) を通過すると きの, 小物体の速さと面から受ける垂直抗力の大き さを求めよ。 m Vo A 5 (2) 小物体が点Bを通過するための の条件を求めよ。 ●センサー14 解答 (1) 点での小物体の速さを 円運動では,地上から見て 解くか, 物体から見て解く かを決める。 [m/s] とすると, 力学的エネルギー 保存の法則より B mgcoso N C 1 12= mvo mv2. +mg(r+rcose) ① 地上から見る場合 遠心力は考えず,力を円の 半径方向と接線方向に分解 し,円運動の半径方向の運 動方程式を立てる。 2 ゆえに、 rcos 00 0 mg m-=F r または mrw=F ② 物体から見る場合 v = √v2-2gr(1+cos0) [m/s] 垂直抗力の大きさをN[N] とすると, 地上から見た円運動の運動方程式は, m- =N+mg cose r これに”を代入し、整理すると, ......① 遠心力を考え、力を円の半 径方向と接線方向に分解し, 半径方向のつり合いの式を 立てる。 ※どちらでも解ける。 2 mvo N= -mg (2+3cos) 〔N〕 r ……② ● センサー 15 物体が面に接しているとき, 垂直抗力 N≧0 (1) 水平面を重力による位置 エネルギーの基準面とする。 別解 小物体から見ると, 円の半径方向にはたらく力は,実際 にはたらく力のほかに、円の中心0から遠ざかる向き に遠心力がはたらいている。 半径方向の力のつり 合いより, N+mg cosm-00 (量的関係は上と同じ) r 圃 非等速円運動では,円の接線方向にも加速度があり、物体か ら見た場合、接線方向での力のつり合いを考えるためには、接 線方向にはたらく慣性力を考える必要がある。 (2)(1)より,00π [ad] では, 0が小さくなるにつれて, v, Nはともに減少していく。 点Bを通過するためには,点B でぃ> 0 かつN≧0 であればよい。 ① より 0=0を”に代 入して, v= √vo²-4gr よって,vo4gr>0 ゆえにvor 注 ③ ④を比較すると, N≧0(面から離れない条件) が 2 の条件を決めることになる。 2 mvo また,②より 0=0をNに代入して、N= 5mg r 2 mvo よって, -5mg≥0 ゆえに、vo√5gr r ③ ④ がともに成り立つためには,vo ≧√5gr 5円運動 35

解決済み 回答数: 1
物理 高校生

この問題は、等速円運動ではない円運動をしていますよね? 等速円運動ではないのに、等速円運動の運動方程式(F=m×r分のv2乗)を使えるのはなぜですか?

遠心力に関係した身近なものとしては,洗濯機や遊園地のループ式ジェットコースターなどがある。 例題15 鉛直面内での円運動 右図のような, 半径[m〕のなめらかな円筒面に向 けて,質量m〔kg〕 の小物体を大きさ [m/s] の初速 度でなめらかな水平面からすべらせる。 重力加速度の 大きさをg〔m/s'] とする。 53 58 62 B C P (1) 鉛直線となす角が0の点(図の点C) を通過すると きの, 小物体の速さと面から受ける垂直抗力の大き さを求めよ。 人 (2)小物体が点Bを通過するための の条件を求めよ。 Um 0.0& m Vo センサー 14 円運動では,地上から見てる 解くか、物体から見て解く かを決める。 解答 (1) Cでの小物体の速さを [m/s] とすると, 力学的エネルギー 保存の法則より, Bmgcose N C 1 1 ,2= mvo mv+mg(r+rcost) ① 地上から見る場合 2 遠心力は考えず,力を円の 半径方向と接線方向に分解 し円運動の半径方向の運 動方程式を立てる。 ゆえに、 cos00 mg ......① 12 m-=F r または mrw²=F ② 物体から見る場合 遠心力を考え、力を円の半 径方向と接線方向に分解し, 半径方向のつり合いの式を 立てる。 ※どちらでも解ける。 ● センサー 15 v= vv-2gr(1+cos0)[m/s] 垂直抗力の大きさを N[N] とすると, 地上から見た円運動の運動方程式は, v² m =N+mg cose r これを代入し、整理すると, 2 mvo N= -mg (2+3cos) 〔N〕 r ......② 別解 小物体から見ると, 円の半径方向にはたらく力は、実際 にはたらく力のほかに、円の中心から遠ざかる向き に遠心力がはたらいている。 半径方向の力のつり r 物体が面に接しているとき, 垂直抗力 N ≧0 合いより, m01.0 v² ◆N+mg cose-m - 00 (量的関係は上と同じ) (1) 水平面を重力による位置 エネルギーの基準面とする。 r 非等速円運動では、円の接線方向にも加速度があり、物体か ら見た場合、接線方向での力のつり合いを考えるためには,接 線方向にはたらく慣性力を考える必要がある。 (2)(1)より, 00 [ad] では, 0が小さくなるにつれて, 0, Nはともに減少していく。 点Bを通過するためには,点B で0かつN≧0 であればよい。 ①より, 8 = 0 を”に代 入して, v = √vo²-4gr よって, v4gr>0 ゆえに mvo また,②より 8=0をNに代入して, N= 5mg ④を比較すると, N≧0(面から離れない条件) が の条件を決めることになる。 2 mvo よって, -5mg≥0 ゆえに、r r ③④がともに成り立つためには、ひ≧√5gr 5

解決済み 回答数: 1