学年

教科

質問の種類

物理 高校生

物理 波 解き方わからないですお願いします

白色 先 B1のように、ガラスに多数の平行な像をつけて作った回折格子に単色光を に入射したところ、入射方向から角8の方向で回折光が強め合った。また, 図2のように、回折格子の前方にスクリーンを置くと、スクリーン上には回折光 による明が現れた。 00 の男を0とし、そこから近い順に1次元 光..., と呼ぶことにする。ただし、単位長さあたりの数をNとする。 椅子 図2 2次先 先 1 2次先 長の先での方向にm先が生じた。 このときに成り立つ 式として、正しいものを、次の①~6のうちから一つ選べ。ただし,mは または正の整数である。 Nain-mi sin ml Ncos-mi Naine (m+ (+ Ncoes-(m+ cos-mλ 5 N3.0×10本/mm としたとき、3次光が030 の方向に生じた。単色 光の波長入はいくらか。最も適当なものを、次の①~のうちから一つ選べ。 6m ---0-3.6 x 10-7 4.6 x 10~7 ③ 5.6 x 10-7 ④ 6.6 x 10- 7.6 '10-7 Jsing 6 単色光を白色光に替えると、 ではなく幅のあるスペクトル(いろいろな 色がして並んだ光の壱)になるためり合うスペクトルどうしが重なっ てしまうことがある。 白色光に含まれる光の波長入の範囲を, 3.6 x 10mm 入る 7.1x10m として実験を行ったとき、1次光, 2次元 3次光の重なり方について説明し た文として,正しいものを、次の①~5のうちから一つ選べ。7 ①1次と2次は重なるが,3次光は重ならない。 ② 1次光は重ならず 2次元と3次光は重なる。 ⓒ 1次光と光が重なり. 2次元と3次光が重なるが, 1次元と3次元 は重ならない。 1次2次元 3次光のすべてが重なる。 ⑤ いずれも重ならない。 _質1の左側の面から入射する光線を、光の三原色である青 緑 赤の色の光 に取り替えた。 これらの光線からなる1本の光線を紙面と平行に入射させたと ころ、1の右側の面から出てきた光線は色ごとに分けられていた。 ただし, 1の内部を進む光線は2との境の上下の面でそれぞれ1回ずつ反射し、 1の左側の面と右側の面は互いに平行であるものとする。 また、波長が短い 光ほど質1の屈折率が大きい。 問61の右側の面から出てきた光線の色と進む方向を表した図として最も 適当なものを、次の①~④のうちから一つ選べ。19 光ファイバーに 白色光を入れます。

回答募集中 回答数: 0
物理 高校生

(4)なぜθ=0°を代入するのですか?

必修 基礎問 62 薄膜の干渉Ⅱ 図1は波長の単色平行光線が, 空気中か らガラスの表面をおおう厚さdの薄膜に、入射 角0で入射したとき, 光が反射, 屈折 (屈折角 ゆ) する様子を示している。 空気と薄膜の境界 面上で反射する光はAA'DEの経路 を進み, 薄膜とガラスの境界面上で反射する光 入 A A' B 0 D 1 空気 B' n2 d 薄膜 22 C n3 ガラス 図 1 はB→B'→C→D→Eの経路を進む。 ここで, AB, A'B' はそれぞれ同 位相の波面である。空気, 薄膜の屈折率をそれぞれ1, 2 とし,n22はガラス の屈折率 n3 より小さいものとする。 (1) 光が点Cおよび点Dで反射するとき, 光の位相の変化量をそれぞれ答えよ。 (2)2つの反射光の光路差をもたらす部分の経路差をd, Φを用いて表せ。 (3)2つの経路から来た光が点Eで弱め合う条件をd, 0, n2, 入 を用いて表 せ。 ただし,m=0, 1, 2, ... とする。 (4) d=1.00×10-7 [m], n2=1.40 として, 白色光 を垂直に入射させた。 反射光のうち干渉で打ち消 し合う波長を求めることにより, 何色に色づいて 見えるか。 必要ならば、 図2の色相環を用いよ。 図2には円周に沿って [nm] 単位で色光の波長 を示している。 この図において,円の中心に対し 770nm 380nm 640nm 赤紫 430mm 橙 青 590 nm 黄 ** 550 nm 490mm 図2 色相環 て向き合っている2つの色光を混合した場合にも, 白色に見える。この これら2色は互いに補色(余色)であるという。 例えば、 白色光から 色が消えると補色の緑色に見える。 (甲南

未解決 回答数: 1
物理 高校生

(3)はどうしてこのような式になるのでしょうか?

出題パターン 91 原子モデル そのまま 出る! ボーアの水素原子模型では,+e の電気量を持つ陽子のまわりに - の 電気量を持つ質量m の電子が,半径の円軌道上を速さで運動している ものと考える。 プランク定数をん, 真空中での光速をc, クーロン力の比例 定数をとする。 (2) 電子の運動エネルギーと電気力による位置エネルギーの和をke. (1) 電子に働く遠心力と電気力のつりあいの式を書け。 r を用いて表せ。ただし、電気力による位置エネルギーは無限遠を基準とす る。 (3)量子数をn= 1, 2, 3, …として、電子が安定な軌道を運動し続けるた めの条件を mvr, h, n を用いて表せ。 (4)安定な軌道半径rame, h,k, n を用いて表せ。 (5)エネルギー準位Enをme, h,k,n を用いて表せ。 解答のポイント! た 原子核のまわりを回る電子は粒子性と波動性の両方を持っているので,まずは 粒子として,次に波動として安定に存在できる条件を求める。 本間は試験にその まま出るので,何も見ずに と Em を導けるようにしよう。 【解法 (1) まず図 26-12 のように, 電子を陽 電位は向き× 土 子のまわりを円運動している粒子と 回る人 みなす。回る人から見た力のつりあte いの式より, クーロン力 m²² = ke² ... ①© r (2)電子の持つ力学的エネルギーE 図26-12 は運動エネルギーと電気力による位 置エネルギーの和であり, E=123mo -mv² + (-e)) 運動エネルギー 位置エネルギー この式に① ② (図 26-12 参照) を代入して 1 ke ke ke² E= = +(-e)· 2r 2 r r 遠心力 02 r ④がの位置 につくる電位は y=ke... STACE 36 と 291

未解決 回答数: 1