学年

教科

質問の種類

物理 高校生

重要問題集 物理 71 問題を解く上では必要がないのかもしれませんが、どうしても初期状態でのピストンにかかる力のつり合いが気になります。 自分で立てた式では、 P0S=M0g+P0S となってしまい、M0が0になってしまいます。 そもそも大気圧がかかる面積... 続きを読む

(火) 54 ⑨ 気体分子の運動と状態変化 必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 物体 M [kg] 熱効率を求めよう。 図1のように大気中で鉛直にピストン Mo[kg]- 立てられている底面積 S〔m²〕 の円柱形のシリン ダーに質量 Mo [kg] のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho 〔m〕 からん 〔m〕 までである。 重力加速度の大き さを g[m/s] とする。 初期状態は,気体の温度が外部の温度と同じ h[m] ho〔m〕 初期状態単原子分子 状態 2 理想気体 図 1 To [K], 気体の圧力が大気圧と同じPo [Pa〕, ピストンの高さがん 〔m〕 である。 まずビ ストンの上に質量 M [kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し, 高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。 状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し, 高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり,この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 [Pa] (3)状態2のシリンダー内の気体の温度を求めよ。 (4)状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのか-V図を図2にかけ。 (6)このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 図2 V[m³] (8)M=2Mo, Mo- PoS g h=2h の場合の熱効率の値を求めよ。 [12 弘前大〕 B 応用問題 ◇72. 〈半透膜で仕切られた2種類の気体〉 思考) 図1のようにピストンのついた 2 領域 1

未解決 回答数: 0
物理 高校生

右ページ黄マーカー部分について、なんでmω²=Kと置くのかが分かりません。単振動定数みたいな感じでKのまま答えに書くのか、それともKは問題では与えられててそれを元にmやωを求めていくのかなーって色々考えたんですけど分かりませんでした。解答お願いします!

4 データ ③ 周期 Tとその求め方 周期Tとは,単振動に対応する円運動が1周回るのにかかる時間 のことだ。円運動の角速度w (1秒あたりの回転角)は,この周期を用いて、 さて、 ②式と④式に共通して入っているものは何かな? えーと、 ②式と④式には共通の A sin wtが入っています。 2 [rad] 回転する w (rad/s) = T [s]間で かくしんどうすう と書けるね。 このωのことを単振動では角振動数という。 逆にこの式より、 周期 T は、 角振動数w を使って, 2π T= w そうだ。 ここから式変形が続くけど,一つひとつ丁寧に追ってね。 ②式を, A sinwt=xxo として,これを④式に代入すると, a=-ω'(x-x) ………⑤ となるね。 この⑤式は, 時刻によらず、いつでも成り立つ式だね。 ここで、この式の両辺に質量m を掛けてみると, ma= -mω^(x-x) ・・・ と書くことができるね。 さて、図6のように, 半径Aで角速 度ωの円運動を真横から見た単振動を 考えよう。 円運動が点Pを通過した瞬 間を時刻 t = 0 とする。 このとき対応 する単振動の (中) の位置 P′の座標を x=xとしよう。 時刻で円運動は点 Qを通過するが,このときまでの回転 角はwfとなっている。 このときの単 振動の位置Q′の座標は、図6より, さらに、この⑥式の右辺の係数をmw²=(定数K) ...... ⑦ とおくと, ma = -K(x - ): ......(8) wt: LAW となるね。 この⑧式は何を表しているかな? wt [00] =Asinwt...... ② Asinw P'Q間の距離 図6 となっているね。 左辺が ma・・・あ 運動方程式です! そのとおり。 この式はまさに単振動の運動方程式となっているね どうやって,この式から周期を求めるんですか? まず, 物体が座標 x (0) にあるときに運動方程式を立てて⑧式の形に もっていくと,とKが出るでしょ。このとき, ⑦式から,角振動数 また、このときの単振動の速度vと, 加速度α は, 円運動の接線 方向の速度Aw と, 向心加速度 Awをそれぞれ真横から見たものと w= K km ⑨ が求まる。 wが求まれば、 ①式より, して、図6より, T= =2L=2 mm Aw coswt. ③ a = Aw'sin wt....④ ここまでの話は長かったけど. 物理では公式を導く過程が大切 だから、一つひとつ確認してね 右向き正より ⑨より となっているね。 ここまで, じっくりと図6とニラメッコして もう となって, 単振動の周期 Tが求まるんだ。 CS度速canner でスキャン 第17章単振動 | 221

解決済み 回答数: 1
物理 高校生

物理の質問です。 (7)で解説に「Q,S,ε_0は極板間隔によらないので、極板間引力は一定である。」とありますが、仕事の式W=Fxが使えるのはFが定数(一定)の時だけで、問題を解く段階ではFが定数だとは分からないので、W=Fxの式を使うのは間違って居ませんか?循環論法見た... 続きを読む

0 ① 16:38 232 コンデンサーの極板間の引力 基本問題232 面積Sの平面極板 A, Bが間隔dで平行に保持された平行平板コンデンサーがある。 極 板 A, B に充電された電気量が +Q, -Q (Q>0) のとき, 真空の 誘電率をco として以下の問いに答えよ。 (1) この平行平板コンデンサーの電気容量 C を求めよ。 (2) 極板 A, B 間の電位差 V を求めよ。 (3) 極板 A, B 間の電場の強さ E を求めよ。 (4) このコンデンサーに蓄えられている静電エネルギーUを求めよ。 3 (5) 極板Bをわずかに移動して, 極板 A, B間の距離をxだけ増したときの静電エネル ギーの変化 4U を求めよ。 ( 6) 極板Bをわずかにxだけ移動したときの外力のする仕事 W を求めよ。 (7) +Q, -Qに帯電した極板 A, B間のFを求めよ。 事をすることにより与えられる。 Q2x よって W=4U= 2εOS 学習の記録 例題 46 答 解説 (7) 極板を引きはなす力は極板間引力と等しい大きさである。 仕事の式 「W=Fx」より 解説 W Q2[1] F= X 280S ←[1]_Q, S, 80 は極板間隔によらないので,極板間引力は一定である。 ▲ツールバー ホーム オプション 学習ツール 学習記録

解決済み 回答数: 1