学年

教科

質問の種類

物理 高校生

高校物理の円運動の単元です。 (3)と(4) ともに軌道から受ける力の大きさを求めるのですが、なぜ(3)では運動方程式を用いたのに、(4)ではつりあいの式で求めるのでしょうか、!?😭

[知識 (1) C we (2)は (3)△ 221. くぼみを通過する小球 図のように, ABの間は鉛直, B→C→Dの間は点 O を中心とする半径の円周の一部, DE の間は水平面に対して角をなす斜面, E →Fの間は点Oを中心とする半径rの円 周の一部, FGの間は水平となっている なめらかな軌道がある。 また, 点BとEは 同じ高さである。 0, に対して高さんの点 (4) P A (5))(6) (6)5 F G 0₁ E B 0 D 02 C Aから,質量mの小球Pを自由落下させたところ,Pは軌道に沿って同じ鉛直面内を運 動した。 重力加速度の大きさをg として,次の各問に答えよ。 (1) Pが点Bを通過する瞬間の速さを求めよ。 (2) 点Cを通過する瞬間の, Pの運動エネルギーと速さをそれぞれ求めよ。 (3) 点Cで,Pが軌道から受ける力の大きさを求めよ。 (4)Pが点Dを通過した直後の速さを求めよ。 また、このとき,点DでPが軌道から受 ける力の大きさと, (3) で求めた点Cで受ける力の大きさの大小を比較せよ。 (5) 点Eを通過した直後に, Pが軌道からはなれないためのんの条件を, 0, h, r を用 いて表せ。 (6) 点Fを通過した直後に, Pが軌道から受ける力の大きさを求めよ。 ●ヒント (北里コ) 鉛 に

解決済み 回答数: 1
物理 高校生

至急‼️ (1)のm/sについて 黄色の線の部分の 8.83×10の4乗×10³mはどこからきたのですか

例えば,(2)のと 31 30 STEP 1 解答編 p.① 22% 24 21 29 8 合計 51 1 有効数字を考慮して、 次の値を計算せよ。 (8.64×10F)×27: (1) 月は地球を中心とした半径3.8×10kmの円周上を27日かけて公転する。 月が公転する速さは 何km/日か。 また, それは何m/sか。 ただし, 1日を8.64×10's, π=3.14 とする。 8838×104×10m 2 次のデー 園の長さ 8.bx (0km/日] 傾き (物体の速 PART 理で使う数値について 第1部 物体の運動 2 運動の ・問題集 p.3 015 ⑤ 4 × 10' STEP 1 1 (1)4桁 (2)2桁 (3)3桁 問題集 p.3 解説 (1)21.50 4桁 (2) 0.062 2桁 (3)9.05 × 10^3桁 -2 (4)102 05 10-3 ×2×10-12=1010-12=10-2 =102 2 (1)8.3×105 (2)5.1×10-2 (3)1.73×10-3 (4)-1.70 解説 (1)830470≒830000=8.3×105 (2)0.0506=0.051=5.1×10 - 2 (3)0.001733=0.00173=1.73×10-3 確認 問 問題集 p.5 ① 103 2 10-3 ③ 60 ④ 60 ⑤ 3.6 × 103 ⑦ 1.0 ⑧ 27×103 12 1.0 1 1.5×10-3 「! STEP O ⑨ 3.6 × 103 10 7.5 11 14 5.4 1.①速度 2. ② 変位 3.③ ベクトル ④ スポ 4. ⑤AとCとD ⑥AとC [STEP O 30m/s 問 問 (4) -1.6954-1.70 ・問題集 p.4 STEP O -2 ④10-6 (4) ⑧ 103 103 10 2.0 1.(1) 6.9 (2)② 0.64 (または 6.4×10-1) (3) 3 4.3 問題集 p.4 STEP 1 .2 x 10° cm³ (4)10m/s (5)7.2km/h 解説 (1) cm)=3.5×(10-2m) 2 m × 103x (1m) 3 × 103 × (102cm) _x103 +6cm3 × 10°cm3 xx 10°g_7.4×103g_ m = 10°cm3 g/cm³ K」は10のこと 36× 103m 西 250m/s ・問題集 p.6 1.①-250 ②-220 ③西 ④ 220 2.5 15 6 10 ⑦ 5 ⑧ 東 ⑨5 問題集 p.6 「! STEP O ・問題 1(1)8.8×10^km/日, 1.0×103m/s (2)2.0s 2×3.14×3.8×10km 27日 =88385.18・・・ ≒ 8.8×10km/日 1. ① 等速直線 ②等速度 (①,②は順不同) 3.④ 移動距離 4.(1)~(3)は記入例 8.83 × 10 × 103m 8.64 x 10's -=1.02... × 103 m/s 両辺を ゆえに, 1.0 × 103m/s x 102 (2)2×3.14×1 1.0 10 9.80 2×3.14×198 5 2×3.14v5 (2) (cm) 2×3.14149 7 100 =2.00... 80 ポイント! 2×3.14×2.24 ≒2.0 98=2x49=2×72 7 ゆえに, 2.0s (1) 物体の位置 A B C D 時刻 〔s〕 0.2 0.4 0.6 物体の位置〔cm) 19.9 43.9 67.8 91.8 0 2点間の距離〔cm) 2点間の平均の 速さ (cm/s〕 24.0 23.9 24.0 23.9 120 120 120 120 (3) (cm/s) f 120 100 物体の位置 60 速さ 80 60 40 40 20 20

解決済み 回答数: 1
物理 高校生

2つ質問があります 1:⑶、⑷の解き方がわかりません 教えてくださいお願いします🙇 2:次高校3年生です。重要問題集のことなんですけど、どの問題も後半が難しすぎて全く解けません。 学校の宿題で出されるので、解いているんですけど、ほぼ赤です。 重要問題集ってみんなスラ... 続きを読む

必解 35. くばねにつながれた物体との衝突〉 M m Vo B A 0 x 図のように、なめらかな水平面上に, 一端が固定さ れたばね定数んのばねが置かれている。 ばねの他端に は質量mの物体Aがつけられている。 初め、ばねは 自然の長さになっており, 物体Aは静止している。 図のように水平方向にx軸をとり, 紙面 に向かって右向きを正とする。 物体Aの初めの位置を x=0 とする。 質量 M (M> m) の物体Bを, 速度vo (vo>0) 物体Aに衝突させた。 物体Aと物体Bは 弾性衝突し, 衝突直後, 両物体は右方向に進み,その後, 物体Aと物体Bはばねが最も縮ん だ後に再衝突を起こした。 ばねは弾性力がフックの法則に従う範囲で伸縮し, また, ばねの 質量,および物体の大きさはないものとする。 初めの衝突の瞬間を時刻 t = 0 とし、 再衝突の起きる時刻を とする。 初めの衝突から再 衝突が起きるまでの間, 物体Aは単振動を行った。 次の問いに答えよ。 必要であれば、円周 率を用いよ。 (1) 初めの衝突直後の物体A, 物体Bの速度をそれぞれ VA, UB とする。 (a) 初めの衝突前後で成りたつ運動量保存の法則を表す式を書け。 Bre (b) VA, UB を,m, M, vo を用いて表せ。 (2) ばねが最も縮んだとき, 物体Aは, x=Lの位置にあった。 L を va, k, m を用いて表せ。 (3) 初めの衝突から再衝突までの間の任意の時刻t (0≦t≦t) における物体A, 物体Bの位置 を XA, XB とする。XA を va,m, M, k, tの中から,XB をUB, m, M, k, tの中から必要 なものを用いてそれぞれ表せ。 (4) ばねが最も縮んだ後,物体Aと物体Bは,x=1/2の位置で再衝突した。この場合の再衝 突が起こる時刻を,m, kを用いて表せ。 [18 広島大 ]

解決済み 回答数: 1