学年

教科

質問の種類

物理 高校生

画像の問題の答えを教えてください!!

底面積がS[m²), 高さがL(m)の中空の円柱容器に物質を入れて水に浮かべ、浮力の 実験を行った。 以下, 円柱容器に入れた物質も含めて円柱とよぶ。 円柱の運動は鉛直方 向に限られるものとする。 水の密度は深さによらず一定で、円柱の運動にともなう水か らの抵抗, 水面の変化および円柱容器自身の質量は無視する。 ここで水の密度を Po [kg/m3], 重力加速度の大きさをg[m/s2] として次の問いに答えよ。 水面 d Po 図 1 S Po 図2 Po P1 図3 (1) 円柱の下部に密度が1〔kg/m²(ただし, Pipo) の物質を高さ L [m] だけ入れて 水に浮かべると、 図1のように長さ d [m] だけ水面上に出て静止した。 このとき円柱 が受ける重力の大きさはア [N] である。 水中の物体は,その物体が押しのけた体 積の水が受ける重力の大きさに等しい浮力を鉛直上向きに受けるので、円柱が受ける 浮力の大きさはイ [N] となる。 イに入る適切な文字式を下の解答群の中から1つ選べ。 ③SLg ア ア :posLg ②poLig イ :D PSLg ② pSL-dg 3 PS(L-L₁)g PiSL₁g ④ poS(L-L-dg+pSLng (2) (1)における長さ d [m] を求めよ。 (3) 円柱が静止した状態で、 図2に示すように上から力を加え, 長さ x[m] だけ沈め た。 ただし, xはdに比べて十分小さいとする。 このとき円柱が受ける重力と浮力の 力の大きさ F [N] を求めよ。 (4) 円柱の残りの空間を密度が2〔kg/m3] (ただし, P1 P2) の物質で完全に満たして水 に入れた。 このとき, 図3のように円柱の上面が水面とちょうど同じ位置になって静 止したとする。 物質の密度 P2 [kg/m3] を求めよ。

回答募集中 回答数: 0
物理 高校生

高校物理 75番の(3)と79番鉛筆で波線引っ張った部分の解説がわかりません。教えて欲しいです。

54 第1章 物体の運動とエネルギー 75 仕事率 重力加速度の大きさを 9.8m/sとして、次の仕事をそれぞれ求める (1) クレーン車が質量 2.0×102kgの物体を,一定の速さで35秒間に10m持ち上げ たときの仕事率 2) 自動車が1.5×10°Nの推進力で,一定の速さ 18m/s で走行したときの仕事率 773) 50kgの人が,1.0 分間に高さ12mの階段を一定の速度で上がったときの仕事 ヒント (3)この人は自分にはたらく重力に逆らって12m移動する。宝一高 ➡1 9102 運動エネルギーと仕事 図のように,斜面上に質量 76 3.0kg の台車を置き, 速さ2.0m/sですべらせたところ, ある時間が経過した後に, 台車の速さが6.0m/sになった。 この間に,台車にはたらく合力がした仕事はいくらか。 ➡2 77 ヒント 台車の運動エネルギーの変化) = (台車がされた仕事 ) 9/10 2.0m/s さ6.0m/s 18 ●運動エネルギーと仕事 質量 2.0×10-2kgの小球が, 厚さ 3.0kg # ST 2\m0.0.10m 0.10mの鉛直に固定された木材に,速さ 3.0×102m/s で水平に打ち こまれ、木材を貫通した直後に 1.0×10m/sの速さになった。 木材 の中を進む間, 小球は木材から一定の大きさの抵抗力を, 運動の向き と逆向きに受けるとする。 また, 重力の影響は無視できるものとする。 (1) 小球が木材を貫通するまでに、木材の抵抗力が小球にした仕事はいくらか。 T(2) 木材の抵抗力の大きさはいくらか。 OS ヒント (1) (小球の運動エネルギーの変化)=(小球がされた仕事 ) 223 ・木材 ➡2 NET 78重力による位置エネルギー 崖から10m上の塔の屋上には 質量 2.0kgの物体Aがあり, 崖から15m下の水面には質量面 4.0kgの物体Bが浮かんでいる。 重力加速度の大きさを 9.8m/s20 とする。 AQ 塔 10m 崖 (1) 水面を基準にとるとき, A,Bの重力による位置エネルギーは それぞれいくらか。 15m B (2) 崖を基準にとるとき, A, B の重力による位置エネルギーはそ れぞれいくらか。 -2 水面 79弾性力による位置エネルギー 図のように, 一端を壁 ヒント 重力による位置エネルギーは,基準のとりかたによって正にも負にもなる。 駐車 車 に固定したばね定数 3.0 × 102N/m の軽いばねの他端に物体 をつけて,この物体を水平方向に手で引く。 00000000 (1) ばねを自然の長さから10cm伸ばすとき, 物体がもつ弾性力による位置エネル ギーはいくらになるか。 また,このときに手が加えた力がした仕事はいくらか。 2)このばねをさらに10cm伸ばすとき、物体がもつ弾性力による位置エネルギーは いくらになるか。 また、このときに手が加えた力がした仕事はいくらか。 ➡2 ヒント 弾性力による位置エネルギーは, 弾性力に逆らって加えた力のした仕事に等しい。

回答募集中 回答数: 0
物理 高校生

最後の文について質問です。なぜ軽い原子核は核融合を起こしやすく、重い原子核は核分裂を起こしやすいのかがいまいちよく分からないので教えてほしいです。

とう かせい 質量とエネルギーの等価性 アインシュタインの相対性理論によると, 質 量はエネルギーの1つの形態であり, 質量mがエネルギーに転化すると mc2 だけのエネルギーEが発生する。 E=mc2 mc2 は静止エネルギーとよばれる。 ちょっと一言 質量はいわばエネルギーの貯蔵庫。 mc' は鉛筆が一本消滅する と,大都市が吹っ飛ぶくらいの大きなエネルギーだが,原子核反応 というkey がないと貯蔵庫の扉は開かない。なお, 単位は m[kg], c [m/s]ならE[J] だ。単位的には1/2m2と同じこと。 結合エネルギー 質量の大きなものほど静止エネルギーが大きいから,バ ラバラ状態の方が原子核の状態より高いエネルギーにあることになる。 そ のエネルギー差を結合エネルギー ⊿E という。 AE=Am c² 結合エネルギーは質量欠損⊿m と兄弟関係の量だ。 かくりょく ちょっと一言 原子核をバラバラにしようと思うと, 核子間に働く引力 (核力) に逆らって外から力を加え, 引きはがしていくという仕事をしなけ ればならない。この加えた仕事 (エネルギー)が質量という貯蔵庫に 蓄えられ, バラバラ状態の方が重くなるというわけだ。 結合エネル ギーは結合を壊しバラバラにするためのエネルギーだ。 High 結合エネルギーを核子数 (質量数) で割った値⊿E/A を核子1個当たり の結合エネルギーという。 これは原子核の安定性の目安になり、値の大き なものほど安定である。 原子核から核子1個を抜き出せば残りはもはや別 の原子核になるからだ。 たとえば酸素0から陽子1個を取れば窒素 Nに なってしまう。 かくゆうごう 軽い原子核はまとまった方が安定で核融合を起こしやすく, 重い原子核 は分かれた方が安定で核分裂を起こしやすい。

解決済み 回答数: 1
物理 高校生

「カ(カタカナ)」についてです。 答えは下に書いてある通りなのですが、gが下向き、aが上向きの力だと思ったのでg+aでなくg-aになると考えました。 何が間違っているのか教えてください🙇‍♀️

4 次の文中の |内に入れるべき答えを記せ。 ぴぴ²=2ax 図のように、エレベーターの床面の上になめらかな斜面と水平面があり、斜面の上 に小球(質量m[kg]) がある。 ↓↑ (1) エレベーターが静止している場合につ いて考える。 重力加速度をg [m/s2] とすれば,斜面 上にある小球が初速度0[m/s] で高さ [m]だけ斜面をすべり落ちるときに失う 位置エネルギーはアである。 また, 2=0 P点を通過するときの小球の速度を V1m/s] とすれば,そのときの小球のも Ta P QL つ運動エネルギーはイである。これらの関係式から、小球の速度はV1=ウ となる。さらに,小球がP点から水平方向に飛びだして高さん〔m〕だけ落下し, Q点 から距離がL] [m]だけ離れた床面上の点と接触した。 小球がP点を飛びだしてから床 面と接触するまでの時間はエであるから,小球が床面と接触する点までの距離は, L=オ となる。 アmgh mgh=1/2 イ I sigh t=L, h = £ge": L 20 t V₁ = 2gh オ √22h 2h (2)エレベーターが一定の加速度 a 〔m/s2〕 (0<a<g)で上昇する場合について考える。 斜面上にある小球が, 初速度0[m/s] で高さん [m]の斜面をすべり落ちた後にP 点を通過するときの速度は,エレベーター内の観測者から見るとV2=カである。 さらに,小球が速度 V2 で P点から飛びだし, Q点から距離がL2〔m〕だけ離れた床 面上の点と接触した。 小球がP点を飛びだしてから床面と接触するまでの時間は キであるから,小球が床面と接触する点までの距離は,L2=クとなる。 (3)前問 (2)において, 小球がP点から飛びだした瞬間に、エレベーターが同じ大き さの加速度で下降する場合 (すなわち加速度が-a 〔m/s2] となる場合)には,小球 が床面と接触する点までの距離は, L3=ケである。 また, L=2L2 となる場合のエレベーターの加速度は, a=コである。 カ V2=2h(gta)

解決済み 回答数: 1