学年

教科

質問の種類

物理 高校生

この問題よく分からないので教えてください😭下答えあります

基本例題 26 液体の圧力と浮力 密度ρ[kg/m²]の一様な液体中に円筒形状の物体がある。 物体大気圧ガ の上下面は水平に保たれ, その面積はS〔m²〕 高さは (h-k) [m] である。 大気圧は p。 〔Pa], 重力加速度の大きさはg 〔m/s2] であ h₁ 考え方 2 る。 (1) 液面からの深さがん 〔m〕 の上面に及ぼされる圧力か 〔Pa]を 求めよ。 (2) 液面からの深さがん 〔m〕 の下面に及ぼされる圧力 〔Pa] を 求めよ。 (3) 液体から物体にはたらく合力の大きさ F〔N〕を求めよ。 また, 向きも答えよ。 (4) 物体の体積をV[m²] として,液体から物体にはたらく浮力の大きさを求めよ。 h₂ 密度 液面 P₁ ぼす水平方向の力はつり合っている。 鉛直方向は p > b より 物体にはたらく合力は鉛直上向き。 よって,F=pS-PS=pg(he-hi)S〔N〕 4) 液体から物体にはたらく浮力とは, (3)の力のことである。 V= (h2h)Sだから, (3) に代入して, F = pVg〔N〕 液体から物体に及ぼされる圧力は、大気圧と液体の単位面積あたりの重さの和であ る。一般に,密度 [kg/m²] の液体中で,液面から鉛直下方ん〔m〕のところの圧力 はpgh [Pa] だけ大きい。 p pzS = poS+pghS よって, pz = po+pgh 〔Pa〕 3) 同じ深さのところでは圧力が同じだから、物体の側面に周囲の液体が及 物体 解説 1) 物体の上面には, 大気が液面を押す力 poS 〔N〕 に加え, 高さん [m], 断面積S[m²] の液体 の重さもかかっているので, piS = poS+pghS よって, b=bo+pghi 〔Pa〕 2)(1)と同様に,物体の下面には,大気が液面を押す力に加え,高さん 〔m〕, 断面積S[m²]の 液体の重さもかかっているので 10, 物体 P₂

回答募集中 回答数: 0
物理 高校生

37のスについて 解答でキルヒホッフ第2の法則を用いていますが、どこの閉回路についてなのでしょうか?

さの方向(Bの方向とPの運動方向の両方に垂直な方向) に大きさがの 端には起電力が生じる。 このとき, Pの内部の電場の大きさは であり、 (イ) 力を受ける。 その結果, Pの片側は電子が過剰になって負に帯電しPの画 この電場から電子が受ける力の大きさはエ)である。 電場から電子が受ける力 と電子に働く (イ) 力はつりあうと考えてよいので、V=(オ)が得られる。 (2) 次にSが閉じている場合を考える。 Pの支えをはずすと同時に, P, Q に初速度 での間, PとQは速さ uo の等速運動を行った。 このときQが1秒間に失う位置エネ uo を与えるようにQを鉛直方向に引きおろしたところ, Pがレールの端に達するま 秒間にRで発生する熱量は() となる。 等速運動では, P, Qの運動エネルギー ルギーは (カ) である。 また. この運動中, R の両端の電位差は (キ)であり,1 (秋田大) が変化しないことを考慮すると, uo は (ケ) となることがわかる。 212 図に示すように電圧e [V] の交 電源電圧 E〔V〕 の直流電源E, 抵抗値がそれぞれ R [Ω], R2 〔9〕, a R3 [Ω] の抵抗 Rs, R2, R3, 電気容量 C [F] E のコンデンサー C. 鉄心に巻かれたコイル (37 鉄心 R₁ Sis INT R₂ S₁ S₂ S, コイル2 12.0 コイル1 1とコイル2およびスイッチ S1,S2, S3, S, で構成される回路がある。ここで, コイル 1, コイル2および電源の抵抗は考えな いものとする。また,コイル1の自己インダクタンスをム [H], コイル1とコイル 2 の相互インダクタンスを M [H] (M> 0) とする。最初, コンデンサーには電荷がな く,すべてのスイッチは開いた状態にあるとして,以下の文章中の を埋めよ。 なお,図中で電圧 e, E, v1, v2 と電流 is, i2, is の正方向はそれぞれに付けている矢印 により定義する。電圧の矢印は矢の根元に対する矢の先端の電圧を表し,例えば図の 電圧eは, a点の電位がb点の電位より高いと正である。 電流は, 矢印の方向に正電 荷が移動している場合を正とする。 (1) スイッチ S と S3 だけを同時に閉じた。 このとき抵抗R に流れる電流は, [ア][A] である。コンデンサーのスイッチ S3側の極板の電荷をqとすると, q は (イ) [C] である。 gが微小時間 ⊿t[s] の間に 4g 〔C〕 だけ変化するとすれば、 コンデンサーに流れる電流はこれらを用いて,(ウ) 〔A〕 と表される。 交流電源 の電圧が, e=Eosinwt で与えられるときは (エ) 〔A〕 と求められる。ただし, E〔V〕 およびω 〔rad/s] は定数, t [s] は時間である。 交流電圧 Eosinwt の実効値 は (オ) [V] , 周波数が60 [Hz] の電源の場合, ω は (カ) [rad/s] となる。 (2) 次に, スイッチ S と S3 を開いてからスイッチ S2とS を同時に閉じたところ、 コイルに流れる電流 is は徐々に増加し, しばらくすると一定の値になった。 なお, コイル2の端子c, d には何も接続していない。 電流が微小時間 4t 〔s] の間に ⊿is 〔A〕 だけ変化したとき, コイル1の両端に生じる電圧 vi は, (キ) [V] で, 図 の電圧v2 は (ク) 〔V〕 である。 このように, コイル1によってコイル2に電圧が (A) で, 電流はえを用いると (サ) [A] である。 また、このときの電圧 2 は 生じる現象は (ケ) とよばれる。 電流が一定の定常状態では、電流は [V] である。 is 04 (A) 11:28, 10, 12(V), BE P その後, スイッチ S は閉じたままスイッチ S2を開いたところ、電流は徐々に 減少した。 この電流の は (セ)[V] である。 (長崎大) 内部抵抗が無視できる電圧E [V] の 直流電源 E, 抵抗値R [Ω] の抵抗 R, 自 己インダクタンスL[H] のコイルL 気容量がC〔F〕 のコンデンサーCからなる図1 (38) の回路について,以下の問いに答えよ。 ただし, 初期状態では、スイッチは中立の位置bにあ コンデンサーは帯電していないものとする。 り、 また, 抵抗に流れる電流 IR 〔A〕 およびコイルに流れる電流 [A] は、図1の矢印の とする。 1 向きを正の向きと (1) 初期状態から, Sをaに接続した直後に, 抵抗に流れる電流 IR [A] を求めよ。 (5) (2) コンデンサーの極板間の電圧V[V] [V] になったときの電流 IR [A] を求めよ。 ・t 175/1 (③) 十分に時間が経ったときの電流 IR [A] を求めよ。 (4) 電流 IR 〔A〕 と時間 t [s] の関係を表すグラフはどれか。 図2の①〜 12 のうちから 正しいものを一つ選べ。 ただし, Sをaに接続したときを t=0 とする。 20 6 t R M W 9 10 0 C. OF 図1 -t LL 8 AM 12 第4章 電気と磁気 図2 (5) 十分に時間が経ったときのコンデンサーにたまっている電気量 Q [C] を求めよ。 (6) 十分に時間が経った後, Scに接続したとき、 コイルに流れる電流と時間 の関係を表すグラフはどれか。 図2の①〜 12 のうちから正しいものを一つ選べ。 た だし,Sをcに接続したときを t=0 とする。 (7) (6)における電流 [A] の最大値を求めよ。 (福井大) 演習問題 213

未解決 回答数: 1