学年

教科

質問の種類

物理 高校生

この問題に関して質問です。 ・(イ)でなぜv<Vと分かるのですか? ・(ハ)でなぜt=2πnl/Tと分かるのか ・(ハ)の運動方程式でなぜma=kVとなるのか 全てじゃなくていいので、教えて頂けると助かります。

12 2023 年度 物理 2 鉛直に固定された中心軸の周りを回転する液体中における小球の運動を調べる。液体を満た した容器の中で,中心軸上の点に、長さの細くて質量が無視できる支持棒が取り付けられて いる。 図1のように、質量mの小球が支持棒の先に固定され, 液体内で半径の円運動をする。 小球や液体の円運動を単位時間あたりの回転数で表す。 小球が液体から受ける力は、小球の速度 に平行で、小球と液体の速度が近づくように働く。 力の大きさは、液体と小球の相対速度の大き さのお倍(k>0)である。 支持棒が液体から受ける力は無視できる。液体の容器はじゅうぶんに 大きく、液体は小球の運動の影響を受けないとしてよい。 以下の問に答えよ。 液体の回転数を一定に保った実験を行う。 小球は時刻 t=0に円運動を始め, じゅうぶんに時間 が経過すると、その回転数が no で一定になったとみなせるようになった。このときの小球の角速 度は 2 と表される。 図2の曲線は,その間の小球の回転数の変化を表している。図中の破線は t=0における曲線の接線であり, 原点(0, 0) と点 (T,no) を通る。 (イ)ある瞬間の小球の速さをv, 小球の位置における液体の速さをVとする。 小球の運動方向の 加速度の大きさと,小球が支持棒から受ける中心軸方向の力の大きさ N を,それぞれm, k, V,v, l より必要なものを用いて表せ。 (ロ) 小球の回転数が no に達したとみなせるとき, VとNをそれぞれ m, l, no より必要なもの を用いて表せ。 ×(ハ) 比例係数kをm, l, no, T より必要なものを用いて表せ。 小球の回転数が no に達してからじゅうぶんに時間が経った後, 液体の回転数を一定の割合で増 加させた。 液体の回転数の増加を開始した時刻を改めてt=0 として, その後の小球の回転数の変 化を表したグラフが図3である。 時刻 t=3Tにおいて小球の回転数は2m となり, その後, 小球 の回転数の単位時間あたりの増加は一定とみなせるようになった。 t=3T の後の回転数の変化の no となる位置で縦軸と交わった。 グラフを, t<3T の範囲に伸ばすと, t=0のときに回転数が 2 X(二) 時刻 3T より後の時刻t を考える。小球の速さ”と液体の速さ V を,それぞれl, no, T, t を用いて表せ。 4回転数 no 0¹ T 液体の速さ 図2 中心軸 Ko 時間 図 1 V 支持棒 4回転数 2no mm-20 図3 (3T) 時間 t

解決済み 回答数: 1
物理 高校生

(1)のマーカー部についてです。 ドップラー効果の式についてです。 音源が近づく場合はV -v0となると思ったんですけど、なぜこのような式になるのですか?

発展例題32 反射板とドップラー効果 物理 図のように、観測者Oと振動数fo [Hz] の音源Sは静止し ており,反射板Rが左向きに速さvo 〔m/s]で運動する。いず れも同一直線上にあり,音速をV[m/s] とする。 次の各問に 答えよ。 10 (1) 観測者Oが聞く反射音の振動数は何Hz か。 MOL 指針 (1) 反射板Rは, 音源Sから出さ れた音を観測者として受け,それを反射すると き, 音源としての役割を果たす。 それぞれドッ プラー効果の式を用いて計算する。 (2) 1波長分の波を1個と数えると,音源Sが 発した波の数と観測者Oが聞く波の数は等しい。 解説 (1) 反射板R が受ける音の振動数 V+vo ._._._._.___.___________________ (2) 音源Sが音を to [s] 間発したとき,観測者Oは反射音を何s間聞くか。 You 6 LATKER 70 t=f₂ fi(Hz)l£, f₁= -f[Hz]小さくしてみた 反射板Rは振動数f] [Hz] の音源とみなせ, 観 fzt=foto 0 WHASON U S foto V-Vo V + vo = 発展問題 389 -to 測者が聞く反射音の振動数 〔Hz] は, V V + vo f₂=- -f₁= V-Vo V-vo 日 fo(Hz) 888 (2) 観測者Oは1s間にた個の波を受け、求め る時間をとすると,その間に受ける波の数 foto は等しい。 だと,音源Sが発する波の数 Vo SX4 ( ( 東亜大改) R V-voto(s) V + vo

未解決 回答数: 1
物理 高校生

(3)のニが分かりません。 普通に1×Qじゃだめなんでしょうか?

166 2021年度 物理 次の文章を読み, ほ 答欄にマークせよ。 い 立命館大学部個別 (理系) イ に適切な数値を解答欄に記入せよ。 また, には指定された選択肢からもっとも適切なものを一つ選び、解 図1のように xyz軸を取り, 一辺の長さがLの正方形で厚さが無視できる導体板 A,B をそれぞれx = 0,x=d (ただしd>0)の位置に固定した。 導体板Aは 接地されており, 導体板Bには電気量Q(ただし Q > 0) の電荷が与えられてい る。また、以下の〔1〕〔2〕〔3〕 において、導体板や誘電体の中心は常にx軸 上にあり, 正方形の各辺はy軸、z軸と平行であるとする。 真空の誘電率をe とし, Lはdよりも十分大きいものとする。 ろ 〔1〕 図1において, 座標 (d-r,r, 0) に点P, 座標 (d,r,0)に点Rを 取る(図2)。ただし,0<r<d0<r</1/2であるとする。点Pでの電場 の向きは であり,大きさは である。 このとき, 導体板B の 電位を Vo とすると, Vo = は であり, 導体板 A,Bの間に蓄えられる静 電エネルギーを U とすると, U = に である。 また, 外力を加えて電気 量 g の点電荷を図2の原点Oから点R まで線分OR上をゆっくりと動かすと き, 外力がする仕事は ほ に等しい。ただし, |q| はQに比べ十分小さい とする。 〔2〕 図1において, さらに導体板 A,Bと同じ形状, 大きさを持ち,接地された 3 導体板Cをx=no dの位置に固定した (図3)。 十分な時間が経過した後,導 2 体板 B の電位は ×V となる。 また, 導体板 A,Bの間に蓄えられる 静電エネルギーは ×U となり,導体板 B, Cの間に蓄えられる静電 ×U となる。 エネルギーは 〔3〕 図1において、 今度は一様な比誘電率3を持ち, 断面が一辺の長さLの正 d 方形で厚さの誘電体 (絶縁体)で導体板 A を完全に覆った (図4)。 誘電体 では、誘電分極によってその表面に電荷(分極電荷)が現れ、誘電体内部の電 場を弱めるはたらきをする。 比誘電率を考慮すると,図4の「表面D」に現 れる分極電荷の電気量は = ×Qとなることがわかる。 また, 十分な時

未解決 回答数: 1