学年

教科

質問の種類

物理 高校生

数1青チャートの問題で (2)です 任意の実数xってどういう意味ですか? 問題の意味が理解できません a=0のとき例えばx=0は成り立たないと解説の最初の方にありますがなんのことかわからないです

194 00000 基本 115 常に成り立つ不等式 (絶対不等式) (1) すべての実数x に対して, 2次不等式x2+(k+3)x-k> 0 が成り立つよう な定数kの値の範囲を求めよ。 (2) 任意の実数x に対して, 不等式 ax2²-2√3x+a+2≦ 0 が成り立つような定 数αの値の範囲を求めよ。 p.187 基本事項 指針左辺をf(x) としたときの, y=f(x)のグラフと関連付けて考えるとよい。 (1) f(x)=x2+(k+3)x-kとすると, すべての実数x に対してf(x)> 0 が成り立つのは, y=f(x)のグラフが常にX軸より上側 (v>0 の部分)に あるときである。 y=f(x)のグラフは下に凸の放物線であるから, グラフが 常にx軸より上側にあるための条件は, x軸と共有点をも たないことである。 よって, f(x)=0の判別式をDとする と, D<0 が条件となる。 D<0はkについての不等式になるから, それを解いてんの値の範囲を求める。 (2)(1)と同様に解くことができるが,単に「不等式」 とあるから.α=0の場合(2次 y=f(x) f(x)の値が常に正 a=0のとき、 y=f(x) の よって す の条件は, x軸と共有 ある。 2 める条件 であるか よって a<0と [補足] この例題 対不等式

解決済み 回答数: 1
物理 高校生

物理運動量の和の話です。(15)を求めるのですが、自分は緑で書いたように立式してしまったのですが、色々ご指摘を貰いたいです。 このワークでは反発係数を求める問題ですが、最初の速度に反発係数をかけると、後の速度が出るということが出るという事で、今回そのような立式をしました。 ... 続きを読む

13 次の文章の空欄 【11】~【15】 にあてはまる最も適当なものを、 解答群から選べ。 ただし、同じも のを何度選んでもよい。 図1のように、 なめらかな水平面上で, 速さ 3.0m/sで右向きに進む質量 2.0kgの台車Aと, 速さ 1.0m/s で左向きに進む質量 1.0kgの台車 B がある。速度の正の向きを右向きとする。台 車A,Bの運動量の和は【11】kg・m/s である。 台車 A,Bの衝突直後,図2のように, 台車Aが速さ 1.0m/sで右向きに進むとき,台車Bは 速さ 【12】m/s で右向きに進む。この衝突によって【13】Jの力学的エネルギーが失われ,台車A, Bの間の反発係数 (はね返り係数)は 【14】 である。 その後,台車Bは水平面の右側に固定されたばねではね返り, 台車Aと2回目の衝突をする。 その衝突後, 台車 A,Bはそれぞれ水平面の左側、右側に固定されたばねではね返り,3回目の 衝突をする。 3回目の衝突直後の台車 A,Bの運動量の和は【15】kg・m/s である。 ただし,台車 がばねではね返るとき, 力学的エネルギーは保存するものとする。 また, 台車 A, B が衝突する とき, 台車 A, Bは共にばねから離れているものとする。 000000 -00000 3回目: 2.49 3.0m/s 反発係数=0.50 1回目衡後A=10m/s 2周目 LAT = 1.0m/s A A=1.0×0.50 =0.50 衝突前 1回目の衝突直後 図 1 図2 GB= 1.0m/s B B 3.0 M(J 156- Icg 4 :3.0×0.5 =1.5 eft = 65 fal ~1.75 = 0.50×0.50 - 0₂21 P=0.25×2.0+0.75×10=0.fotagr =1.325 ばね 000 ばね 0000

回答募集中 回答数: 0
物理 高校生

Q1' Q2'の出し方を教えていただきたいです

問題 90 電気量保存の法則 ② 次の文中の空欄にあてはまる式を記せ。 図のように、電圧V[V] の電池 E1 と E2, 電 気容量 C〔F〕 のコンデンサー C1 と C2, および スイッチS と S2を接続する。 はじめ, スイ ニッチは開いた状態であり、コンデンサーは電 荷を蓄えていないものとして、次の操作 Ⅰ か らⅢを順に行う。 a2 S2 , b2 E1E2 C₁ Si bi 18 物理 C₂ 操作Ⅰ スイッチ S1 を a1, スイッチS2をa2 に順に接続した。 コンデンサー C] の右側の極板に蓄えられる電荷は, Q (1) 〔C〕である。 = 操作Ⅱ スイッチ Si を bi, スイッチ S2 をb2に順に接続した。 このとき、コ ンデンサーCの右側の極板および C2の左側の極板に蓄えられている電 荷をそれぞれ Q1 Q2 とすると,Q=Q1+Q2 である。 一方, キルヒホッ フの第二法則より、VをQ1. Q2, C で表すと, V= (2) 〔V〕である。 Q Q2をCVを用いて表すと, Q1 = (3) (C), Q2 (4) 〔C〕である。 操作Ⅲ スイッチ S1 を a1, スイッチS2をa2 に順に接続したあと, スイッチ S1 を b1, スイッチ S2をb2に順に接続した。 コンデンサー C」 の右側の極板 に蓄えられている電荷をC, Vを用いて表すと. (5) (C) であり、コン デンサーC2の左側の極板に蓄えられている電荷をC, V を用いて表すと, (6) 〔C〕である。 〈愛媛大〉

回答募集中 回答数: 0
物理 高校生

(5)解説で「⑤式において、θ=135°にもかかわらずΔλ≒0となるのは〜」とあるのですが、なんでΔλが0に近づくとX線強度が跳ね上がるのですか? (出典:難問題の系統とその解き方)

(i) 電圧 くなり ・飛び のよう たの) 傾きこん Wo h ら, 例題 コンプトン効果 電子の質量をm, プランク定数をん, 光速をcとして、以下の設問 に答えよ。なお, (1), (2) 以外は解法も簡潔に記すこと。 [A] 1923年, コンプトンは波長入のX線を金属薄膜に照射し、散乱さ れたX線の強度の角度分布を測定した。その結果の一部を模式的 に示したのが図1であり,X線が散乱されてもとの波長より長く なっている成分のあることが観測されている。 コンプトンはこの現象を,X線を粒子と考え、この粒子すなわ 光子と静止している電子との衝突と考えて解明した。 図1(a) X線強度 (X線の散乱角80°) 入 X線波長 図 1 (b) X線強度 (X線の散乱角0=135°) M 入。 入 X線波長 図2 入射光子 (19) O- 散乱光子 (1) O 反跳電子 (0) (1) 光子のエネルギーEと運動量P を,h, c, およびX線の波長入のう ち必要なものを用いて, それぞれ表せ。 (1-cos 0) を導け。 ただし、 (2) 散乱前後の光子の波長をそれぞれ入, 入] とし, 反跳電子の速さをか とし,入射方向に対するそれぞれの散乱角を,図2のように0.④と する。このとき,入射方向とそれに垂直な方向の運動量保存則を それぞれ記し,さらに、エネルギー保存則を記せ。 h (3) 41 (=A₁-A)=- 4 « 1 として、 do mc 近似を用いること。 (4) 反跳電子の運動エネルギーの最大値T maxをm,hcおよびふを用 いて表せ。 (50=135°の図1(b) では, 波長入。 付近にもピークが見られる。波長の ピークが光子と金属中の電子との散乱によるのなら、山のピーク は光子と何との散乱と考えられるか。 理由も述べよ。 [B] 一方、電子の波動性については, 1924年ド・ブロイが予想し, 1927年デヴィッスンとジャーマーが検証した。 彼らは格子間隔dの 2-1 原子の構造 263

解決済み 回答数: 1